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Preface 

This textbook is devoted to the study of those topics that are traditionally 
considered to constitute the subject of college algebra. Although a course 
in elementary algebra is a minimum prerequisite, the book will be most 
effective with those students who have also completed intermediate algebra 
and plane trigonometry. 

The importance of a sound, thorough course in college algebra cannot 
be overemphasized. It is a common experience to have weaknesses in 
algebra hamper a student in his later study of analytic geometry and 
calculus. For this reason I have given primary attention to exposition in 
the presentation of the material and have laid particular stress on moti- 
vation and clarity of statement. It is worthy of note that every chapter 
begins with an introductory section whose object is to give the student not 

only a preliminary idea of the nature of the chapter but also its relation to 
later topics and other branches of mathematics. 
A sincere attempt has been made to present the subject matter so as to 

meet most effectively the requirements of both instructor and student. 
The material has been arranged so that it may be readily divided into 

lessons for individual assignments while maintaining unity of development. 
Important results are presented in the form of completely stated theorems 

and summaries. This makes the book convenient for future reference. 
The text is flexible in approach; thus courses of varying lengths may be 

constructed by selecting specific chapters and parts of chapters without 

affecting the continuity of the subject. 
Greater stress has naturally been laid on the later and more advanced 

chapters of the text. However, the earlier chapters are more than a review 

of elementary and intermediate algebra; they present the subject from a 

more advanced standpoint, which the student is better able to comprehend 

in view of his greater experience. 

Certain special features of the book should help to relate the material to 

modern developments. To begin with, Chapter 1 provides an informal, 

elementary introduction to the foundations, structure, and nature of 

Vy 



vi Preface 

algebra. The material of this chapter is substantially the contents of the 

opening lecture that I have given for many years to my classes in college 

algebra. 

Chapter 2 gives a complete treatment of the very important subject of 

algebraic operations. Elementary proofs of the properties of the funda- 

mental operations are presented simply and attractively at a level of rigor 

that is readily understood by the student. Also, at an appropriate place in 

this chapter, one section is devoted to an elementary introduction to the 

important concept of number field. 

The treatment of inequalities (Chapter 6) is somewhat fuller than in most 

textbooks on college algebra. Past experience has shown that-this is a 

topic where a great many students need considerable help. 
A complete treatment of complex numbers is given in Chapter 8. In 

addition, the important concepts of group and vector are introduced and 
discussed in an elementary manner. The chapter concludes with an 

illuminating section on functions of a complex variable. 
Permutations and combinations (Chapter 13) and the important subject 

of probability (Chapter 14) are discussed in considerable detail, with 
particular attention to the binomial expansion. 

The subject of determinants (Chapter 15) has received special treatment. 
Since this topic usually presents difficulties to the student, the approach is 
slow and simple and places emphasis on the techniques of evaluating 
determinants. After the student has learned how to operate with deter- 
minants, he is in a much better position to understand and appreciate the 
proofs of the theorems. 

A distinct feature of the book is the exercises, of which there are more 

than 2000. In addition, there are over 200 examples with complete solu- 
tions. These exercises are far more than those of the drill variety. They 
have been designed to accomplish a number of purposes. Primarily, of 

course, the exercises serve to further and complete the student’s under- 

standing of both principles and applications. In point of difficulty, the 
exercises range from those which are quite simple to those which represent 

a challenge. Some exercises have been included to introduce additional 
topics which the instructor may expand at his discretion. 

For their unceasing help, cooperation, and encouragement, I wish to 
express sincere appreciation to my friends and colleagues, Professor James 
N. Eastham and Mr. Alan Wayne. Each has read the entire manuscript 
independently and painstakingly and each has contributed immeasurably to 
thevalue of the book by his comments, suggestions, and constructive criticism. 

I also wish to thank those members of the editorial staff of John Wiley 
and Sons who have given their constant help and cooperation. 

Flushing, New York CHARLES H. LEHMANN 
December, 1961 
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1 

Fundamental concepts 

1.1. INTRODUCTION 

The student who starts a course in college algebra has previously 
studied elementary algebra where the emphasis was mainly on algebraic 
operations and solutions. Little or no attention was paid to the foun- 
dations, structure, and nature of algebra. It is, therefore, the purpose of 

this chapter to consider some of these fundamental concepts of algebra. 
The sections which follow give an elementary exposition of the dis- 

tinguishing characteristics of algebra and the foundations on which the 

subject rests. The treatment will necessarily be brief and somewhat 

summary in character, for a detailed study of the structure of algebra, on a 

logical and rigorous basis, properly belongs to more advanced treatises. 
In the following discussion of the fundamental concepts, the student may 
draw freely on his previous experience in elementary algebra. 

1.2, THE FOUNDATIONS OF ALGEBRA 

In mathematics each distinct branch has a logical structure built up 

from certain fundamental statements which are in the nature of assump- 
tions known as postulates. The student has already seen an instance of 

this in his study of elementary geometry. There, from a starting point 
consisting of certain undefined terms, definitions, and postulates, the 

properties of geometric figures are derived in the form of theorems, each 
theorem being a logical consequence of one or more preceding theorems 

and postulates. Similarly, the foundations of algebra rest on certain 

fundamental postulates, undefined terms, and definitions, as we shall now 

proceed to show. 

The starting point of a mathematical science is associated with the 

1 



24 Fundamental Concepts Ch. 1 

meaning of certain basic words or expressions. A word is defined by 

describing it in terms of other words which are either capable of further 

description or else are assumed to be known. It is evident that this process 

will eventually lead us to a word or words for which no definitions are 

available. It then becomes necessary to assume that such words have 

meanings which we agree to accept without formal definition. It is at this 

point that we lay the basis for a logical science such as algebra. 

Since there are no restrictions at the beginning, we are free to choose 
those terms which we agree to accept without definition. It is natural and 
customary to restrict such selection to the simplest and most fundamental 

concepts which, moreover, will not subsequently lead to any contradictions. 
The student will recall that his first experience with computation was in 

counting the number of objects in a group. For this purpose he used 

certain symbols designated as 1, 2, 3, 4, ---+, and called them numbers. 

For our purposes, we will refer to such numbers as the positive integers. 

Accordingly, we now state 

POSTULATE |. We assume the existence of the positive integers, employed 

in counting the number of objects in a group, and designated by the 

Syimbolsel 2 5y3s4 ae te 

The next step in the student’s experience with computation was the 

determination of the total number of objects in two or more distinct groups. 

This required an operation called addition. In particular, to determine the 
total number of objects in two or more groups of equal size, an operation 

called multiplication was employed. These two fundamental and basic 

Operations are the motivation for 

POSTULATE 2. There are two operations on the positive integers, called 

addition and multiplication and designated, respectively, by the symbols 
se NEUE Oe 

With these two postulates as a starting point, it is possible to create the 
entire number system of algebra, as outlined in the next section. 

1.3. THE NUMBER SYSTEM OF ALGEBRA 

If the operations of addition and multiplication are performed upon 
positive integers, the results are again positive integers. Evidently, then, 
the two basic postulates of algebra (Sec. 1.2) restrict all computation to 
positive integers and to the two operations of addition and multiplication. 
To remove this restriction and to meet our requirements for other numbers, 



Sec. 3 The Number System of Algebra 3 

for example, negative numbers and fractions, it becomes necessary to 
introduce further concepts. 

In elementary algebra the student learned to use letters of the alphabet 
to represent numbers. Accordingly, let a and b represent two given 
positive integers which we are to add together, and let c represent their 
sum. We then write the relation 

(1) a+b=c 

and state that it represents the solution of the problem: Given two positive 

integers a and 4, find their sum c.* Now consider a converse of this problem, 

namely, given the sum c of two positive integers a and 5, and given the 
positive integer a, find the other positive integer 6. The solution of this 

problem requires an operation inverse to the operation of addition and 

called subtraction.* This new operation is represented by the symbol —, and 
we write the solution in the form 

(2) b=c—a, 

which states that b is the result of subtracting a from c. From his previous 

experience with numbers the student will realize that relations (1) and (2) 

are equivalent, either one being obtainable from the other. 
We now note the important fact that in a number system restricted to 

positive integers, it is impossible to subtract a larger number from a 

smaller number. To make subtraction possible in this case, we introduce 

new numbers called the negative integers and designated by the symbols 

—1, —2, —3,---. In particular, if we subtract an integer from itself, we 

have the important number zero designated by the symbol 0. Thus, if a 

represents any integer, we have the relation 

(8) a—a=0O, 

which we may regard as a definition of zero. Note that zero is neither a 

positive nor a negative integer. 
We next consider the postulated operation of multiplication. Let a and 

b represent two given integers which we are to multiply together, and let c 

represent their product. We then write the relation 

(4) axb=c, 

where a and b are called the factors of c, and state that it represents the 

solution of the problem: Given two integers a and 4, find their product c. 

Now consider a converse of this problem, namely, given the product c of 

two integers a and b, and given the factor a, find the other factor 6. The 
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solution of this problem requires an operation inverse to the operation of 

multiplication and called division. We write the solution in the form 

(5) rai 
a 

which states that b is the result of dividing c by a. In relation (5), c is 

called the dividend, a the divisor, and 6 the quotient. 

It is important to note that in a number system restricted to integers, it 

is not always possible to perform the operation of division. Thus, if we 

divide the integer 6 by the integer 3, the result is 2, another integer. But 

if we attempt to divide the integer 5 by the integer 3, the operation fails 
because no integer exists such that when multiplied by the integer 3, the 
product is the integer 5. To make division possible in this case, we 

introduce new numbers called fractions and represented by the right 
member of relation (5) where the integer c is called the numerator and the 

integer a is called the denominator. 
With fractions included in our number system, the operation of division, 

as expressed by relation (5), is possible in all cases except one, namely, 

when the divisor a is zero. We shall see later that division by zero is an 
excluded operation. We note further that relations (4) and (5) are equi- 

valent, either one being obtainable from the other, provided, however, that 

the divisor a is different from zero in relation (5). 

At this point our number system consists of the positive and negative 

integers, zero, and the positive and negative fractions. These numbers 
constitute the rational number system for which we have the 

Definition. A number is said to be rational if it can be expressed in the 

form p/q where p is any positive or negative integer or zero, and g is any 
positive or negative integer. 

The integers are rational numbers. For example, 5 = § = 4°, etc. Also, 

zero is a rational number since 0 = O/a where a is any integer and therefore 
different from zero. 

We next consider a special case of multiplication where the factors to be 
multiplied together are all equal. Thus, if we multiply the number a by 

itself, we have the product aa, which we usually write in the form a®. In 

general, the product of n factors, each equal to a, is written in the form a” 
where the positive integer n is called the index or exponent. We then say 
that we are raising the number a to the nth power and call this operation 
involution. 

Let us now write this operation in the form 

(6) Gs). 
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which represents the solution of the problem: Given the number a and the 
positive integer n, find the number 6, the nth power of a. We now consider 
the converse of this problem, namely, given the number 6 and the positive 
integer n, find the number a whose nth power is equal to 6. The solution of 
this problem requires an operation inverse to the operation of involution 
and called evolution. We write the solution in the form 

(7) a= Vb, 

which states that a is an nth root of b. For this reason the operation of 
evolution is also called the extraction of a root. In relation (7), the symbol 
V is called the radical sign and the integer n is called the index of the root. 
We have now arrived at an important stage in the development of the 

number system of algebra. The operations of addition, subtraction, 

multiplication, division, and involution, when applied to rational numbers, 

produce unique results which are also rational numbers, that is, there is no 

further extension of our number system. This, however, is not necessarily 

true for the operation of evolution. For example, the square root of 4 is 
not a unique number but may be either +2 or —2 since (—2)? = 4 as 
well as (+2)*. In this case, the results, while not unique, are still rational 

numbers. However, let us now consider the positive square root of 2, 

which may be written simply as \/2. It is not difficult to show that this 
number cannot be expressed in the form p/g to meet the requirements of 

our definition of a rational number. Such a number is then said to be 

irrational. The rational number system, together with all the positive and 

negative irrational numbers, constitute the real number system of algebra. 
We shall now investigate the last extension of our number system. We 

have seen that the operation of evolution would not be possible in some 

cases if we were restricted to the rational number system. To meet this 

situation we added the irrational numbers to our number system. We note 

also that our examples above involved the square root of positive numbers 
only. But to make evolution possible in all cases, we must consider the 

extraction of roots of negative numbers as well. For example, let us 

attempt to find the square root of —4, that is, we wish to find a number a 

such that a2 = —4. But a fundamental property of the real number 

system is that the square (or even power) of any real number (positive or 

negative) is a positive real number. Evidently the number a does not have 

this property and therefore cannot belong to the real number system. To 

meet this situation we must introduce a new number. 

Let c be any positive number so that —c is a negative number and 

+/—c is not a real number. We may write 

(8) fy See oN a: 
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In this relation, + Vc is a real number, so that if we are to give any meaning 

to +V —c, we must give a meaning to \/—1. For this purpose we have 

the 

Definition. The quantity \/ —1 is called the imaginary unit, is represented 

by the symbol i, and has the property that i? = —1. 

In view of this definition, we may write relation (8) in the form 

4V—c = 4V«i. 
Since +Vc is a real number, we may represent it by the real number 6 so 
that bi represents a new class of numbers for which we have the 

Definition. A number of the form bi, where 6 is any real number and i 

is the imaginary unit, is called a pure imaginary number. 

Later we will have particular use for a number expressed as the sum of a 
real number and a pure imaginary number. Accordingly we have the 

Definition. A number of the form a+ bi, where a and 5b are real 

numbers and / is the imaginary unit, is called a complex number. 

In view of our previous statements, we may now say that in order to 
make all six operations possible in all cases, we have extended our number 

system so as to include the complex numbers. But we may also make a 
very significant observation about the general complex number a + bi. 

Ifa = 0 but b 4 0, a + biassumes the form bi, so that the pure imaginary 
number is a special case of the complex number. If b = 0, a + bi assumes 
the form a, and hence represents a real number. From this viewpoint, a 
real number is merely a special case of a complex number and, accordingly, 

the set of all real numbers is said to be a subclass of the system of complex 
numbers. Although we will often have occasion to make a precise 

distinction between real and complex numbers, we shall, in view of this 

last statement, consider the system of complex numbers to be the number 
system of algebra. 

1.4. THE OPERATIONS OF ALGEBRA 

The six operations discussed in the previous section—addition, sub- 
traction, multiplication, division, involution, and evolution—are the 

operations of algebra. These operations are of extreme importance, not 
only in algebra but also in all other branches of mathematics where they 
may be employed. They are used subject to certain restrictions or condi- 
tions called /aws. It is absolutely essential to apply the operations properly 
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in accordance with these laws in order to obtain correct results. The 
improper use of algebraic operations has probably caused students more 
trouble, not only in algebra but also in other branches of mathematics, 
than anything else. Hence we see the obvious importance of the correct 
application of the algebraic operations and why the entire next chapter is 
devoted to this topic. 

We noted in the previous section that, in order to make the operations 
of algebra possible in all cases, it was necessary to extend our original 
postulated number system of the positive integers by introducing, in turn, 
the negative integers, zero, fractions, irrational numbers, and, finally, 
complex numbers. The student may now naturally pose the question: If 

any of the six operations of algebra are applied to complex numbers, will 

it be necessary to introduce any new type of number different from the 

complex number? The answer is no. We shall see later that the application 
of the operations of algebra to complex numbers always results in complex 
numbers. We then say that the complex number system of algebra is 

closed under the six operations of algebra, that is, the complex number 
system is adequate for the application of all algebraic operations. 

1.5. THE STRUCTURE OF ALGEBRA 

It is impossible to give a concise and yet satisfactory answer to the 

question: What is algebra? Any such attempt will fall far short of giving 

the student an adequate conception of the subject. But we are now ina 

position to state that algebra has a structure which is characterized by 

(1) A specified set of symbols representing complex numbers. 

(2) A specified set of operations on the symbols (1)—the six operations 

of algebra. 
(3) The laws of the operations (2). 

The first two items have been considered in Secs. 1.3 and 1.4, respectively ; 

item (3) will be discussed in the next chapter. 

Evidently, then, algebra has a very simple structure. We shall see 

subsequently that the various topics and problems considered in algebra 

are those which involve subjecting the symbols (1) to the operations (2) in 

accordance with the laws (3). 

1.6. THE NATURE OF ALGEBRA 

It is customary and natural to present the subject of algebra initially to 

the student as an extension or generalization of arithmetic. The student 
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then becomes acquainted with negative numbers for the first time. He also 

learns to use the letters of the alphabet to represent numbers and soon 

realizes the advantage of solving certain problems by letting the letter x or 

some other letter represent the unknown quantity. We now see that these 

concepts are examples of the structure of algebra. 
We may summarize the material of this chapter by giving a characteriza- 

tion of the nature of algebra in the following 

Fundamental definition. A mathematical process is said to be algebraic 

if it involves one or more of the operations of addition, subtraction, 

multiplication, division, involution, and evolution applied one or more 

times in any order to any complex numbers or to any symbol or symbols 

representing complex numbers. 

Asanexample of this definition, consider the expression 2x? — 3xy + 4y?. 

This expression is said to be algebraic because it has been formed by 

applying algebraic operations to numbers and letters which represent 

numbers. 
As another example, consider the quadratic equation 

ax? + be + ¢ = 0, a= 0. 

The student who has studied this equation will recall that its solution is 
given in the form 

at pi Jb? — 4ac 
4 re Ra 

This solution is algebraic since it involves algebraic operations on numbers. 
It is interesting to note that all six algebraic operations are used in this 
solution. 

We conclude by briefly discussing another topic which throws further 
light on the nature of algebra. 

When the student studied geometry in high school, he was told that the 

subject is known as Euclidean geometry. He may also have been told that 
there are other geometries, known as non-Euclidean geometries, with 

properties markedly different from those of Euclidean geometry. Similarly, 

as we shall now see, there are other algebras with properties different from 
those of the algebra we are studying. 

There are numbers whose structure is different from, or a generalization 
of, our complex number a + bi. Such numbers are called Aypercomplex 
numbers. One type of hypercomplex number is known as the guaternion. 
Since a quaternion differs from an ordinary complex number, we might 
expect them to differ in various ways. We may note one such difference. 
Ordinary complex numbers obey the commutative law of multiplication, 
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which states that the product of two numbers is independent of the order 

of multiplication. Thus, if « and y are two complex numbers, the product 
xy is identical to the product yx. However, if A and B are two quaternions, 
it is not true, in general, that AB and BA are equal. The properties and 
applications of quaternions constitute the field of study known as the 
algebra of quaternions. 

Another algebra of considerable interest is the algebra of matrices. The 
basic form in this algebra is called a matrix; it is of great importance in 
modern mathematics and physics. Like quaternions, matrices do not, as a 

rule, obey the commutative law of multiplication. 
There are many other algebras besides the two noted above, but their 

discussion is beyond the scope of this text and will be found in advanced 
treatises. In contradistinction to these algebras, the subject we are about to 
study in this book is often referred to as the algebra of complex numbers. 
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Algebraic operations 

2.1. INTRODUCTION 

This chapter will deal with the operations of algebra (Sec. 1.4) and the 

manner in which they are performed. Once again we emphasize the great 

importance of carrying such operations through correctly. The ability to 
manipulate algebraic expressions accurately and expeditiously is a prime 

prerequisite for satisfactory progress in the applications of algebra. Such 

skills are acquired mainly by practice. The student is therefore strongly 
urged to solve as many as possible of the problems contained in the groups 

of exercises in this chapter. 

2.2. ALGEBRAIC EXPRESSION, TERM, POLYNOMIAL 

In accordance with the fundamental definition of an algebraic process 

(Sec. 1.6), the result of such a process is called an algebraic expression. 

Thus, 3x?y + zis an algebraic expression because it is obtained by applying 

algebraic operations to the number 3 and the letters x, y, and z, which 
represent numbers. Other examples of algebraic expressions are 6x? — 7x 

Va ap 
Bite kanye tal ore aT reg 

The simplest representation of a number is a single numeral or letter, for 

example, the numeral 5 or the letter 6. The most compact representation 

of a number, employing more than a single numeral or letter, is obtained 

by combining these numbers and letters by any of the operations of algebra 

except addition and subtraction. Illustrations of such representation are 

the simple algebraic expressions Say, 2a2b, 3x/2y, 4Vac. Each such 

compact representation of a number is called an algebraic term. 

Any factor of an algebraic term is called the coefficient of the remaining 

10 
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factors. Thus, in the algebraic term Swy, 5 is the coefficient of ay and Sx 
is the coefficient of y. However, it is usually convenient to consider only 
one number or letter as a coefficient. Thus, we designate 5 as the (numeri- 
cal) coefficient of xy in the term Szy and 4 as the (literal) coefficient of ry 
in the term bay. 

Algebraic terms which differ only in their coefficients are said to be 
similar. Thus, Sey and —7xy are similar terms. 

If the letters (or literal portion) of an algebraic term involve only the 
operation of multiplication (or involution), the term is said to be rational 

integral. Thus, the terms Sxy, —32®, and V 5ab2c3 are all rational integral. 
We note that the exponents in a rational integral term are positive integers. 
By the degree of such a term we mean the number representing the sum of 

all these exponents. Thus, Sxy is of degree 2, —32* is of degree 2, and 

V Sab*c3 is of degree 6. 
A single algebraic term is called a monomial. If two or more algebraic 

terms are connected by plus and (or) minus signs, the resulting expression 
is called an algebraic sum. The algebraic sum of two terms is called a 

binomial and that of three terms a trinomial. In general, the algebraic sum 

of two or more terms is called a multinomial. Thus, the multinomial 

Ay — Vy + y?/2 consists of the terms 42”, —22V/y, andi y7/2-m lt 

should be especially noted that the terms of a multinomial are separated by 

plus or minus sign. 
The particular type of multinomial in which each term is rational integral 

is called a polynomial. Examples of polynomials are 2x? + 3ay + y’, 

V/ 228 — 422 + 4z — 8, and 3a + 423 — 222 — 8x + 5. By the degree of 

a polynomial we mean the highest degree of any term in it. Thus, the 
three polynomials just exhibited are of degrees 2, 3, and 4, respectively. 
If each term of a polynomial is of the same degree, it is said to be homo- 
geneous. Thus the first polynomial is homogeneous, but the second and 

third are not. 
The algebraic operations considered in this chapter will be performed 

on the types of algebraic expressions described above. Furthermore, 

unless otherwise noted we will consider these operations to be applied to 

real numbers only. Later we shall make a special study of the complex 

number (Chapter 8). 

2.3. ADDITION 

The operation of addition is characterized by the following five 

postulates, called /aws. 
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(1) Existence law. Addition is always possible. That is, it is always 

possible to perform this operation for any two or more numbers; the 

result is again a number. 
(2) Uniqueness law. Addition is unique. That is, for any two given 

numbers a and 3, there is one and only one number c such that a + b = c. 
The unique number c is called the sum of a and b. 

(3) Commutative law. Addition is commutative. That is, if a and b are 

any two numbers, then a + b = 6 + a. In other words, the sum of two 

(or more) numbers is independent of the order of summation. 

Example. 2+5=5 + 2. 

(4) Associative law. Addition is associative. That is, if a, b, ¢ are any 

three numbers, then (a + b) + c =a+ (b+). In other words, the sum 

of three (or more) numbers is independent of the manner in which they 

CS GOS Example. (2+5)+8=2+6 + 8). 

(5) Equality law. If a, b, and c are any numbers such that a = 5, then 
G7 C= Dene. 

The student will recognize this law as the familiar axiom that if equal 
numbers be added to equal numbers, the sums are equal. 

These laws may be readily extended to any number of quantities. 
In describing the associative law of addition, we used a symbol of 

grouping called the parentheses and designated by the symbol ( ). The 
purpose of this symbol is to indicate that all the terms enclosed are to be 
considered as a single number. Other symbols of grouping are the 

brackets, [ ]; the braces, { }; and the bar or vinculum, _, placed above 

the grouped quantities as in 2 + 5 + 8. 

The addition of algebraic expressions whose terms are all positive is 
performed exactly as in arithmetic. If some of the terms are negative, 
however, the procedure requires special treatment. Since negative numbers 

are introduced in order to make subtraction possible in all cases (Sec. 1.3), 
we will defer consideration of problems in algebraic addition until after the 
discussion of the operation of subtraction. 

2.4. SUBTRACTION 

In Sec. 1.3 we described subtraction as the operation inverse to the 
operation of addition. Subtraction is defined in the following 

ASSUMPTION. For any two numbers a and c, there exists one and only 
one number 4 such that 

(1) atb=c. 



Sec. 4 Subtraction 13 

This number 4 is then given by the relation 

(2) b=c—a, 

which reads “*b equals ¢ minus a,” and we say that b is the difference or 
remainder obtained by subtracting the subtrahend a from the minuend c. 

Example. 5 +2 = 7, whence 2 = 7 — 5. 

We also say that 5 is the number which must be added to the number a in 
order to produce the number c. Thus, from (1) and (2), we have the 
relation 

(3) a+(c—a)=c. 

The operation of subtraction is subject to the 
Equality law. If a, b, and c are any numbers such that a = 5, then 

a—c=b—e. 

The student will recognize this law as the familiar axiom that if equal 
numbers be subtracted from equal numbers, the differences are equal. 

It is important to note in the above assumption that the result of 
subtraction is unique. We now investigate the question of having the 

operation of subtraction always possible. This involves the meaning of 
the statement that one number is greater than another. For this purpose 

we have the following 

Definition. The number z is said to be greater than the number y, 

provided that x — y is a positive number. We then write « > y, which is 

read “x is greater than y.”’ 

Example. 7 > 5, since 7 — 5 = 2, a positive number. 

The relation x > y also implies that y is /ess than x, written y < 2. 

These two relations are of course equivalent. 

With reference to relation (2) above, there are three cases to consider. 

(I) a<c. Here b=c-—a is a positive number. This case is the 

familiar situation in arithmetic where we subtract a smaller from a larger 

number. 

(Il) a=c. Here b=c—a=c—c=0 by definition of zero (Sec. 

1.3). Hence, from (1) we have 
a+0=a 

whence, from the commutative law of addition (Sec. 2.3), we have 

(4) a+0=0+a=4, 

an important property of zero. 
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(111) a> c. In this case we have the situation where we attempt to 
subtract a larger from a smaller number. This is the first significant 

deviation from the operations of arithmetic. 
From a > ¢ it follows that a — c = p, a positive number, so that the 

expression c — a in relation (2) is meaningless in a system restricted to 
positive numbers. In order to make subtraction possible in this case, we 
define c — a in relation (2) to be a negative number and write 

c—a=--py, 

so that 

(5) ¢—a=—(a— 0). 

As an illustration of relation (5), we have 

5—7= —(7 —5) = -2. 

In the particular case where c = 0, the defined negative number c — a 

takes the form 0 — a, which is abbreviated into —a and called the negative 

of a. That is, 

(6) 0-—a=—a. 

The positive number p is sometimes written +p, read “plus p,” in order 
to emphasize the positive sign. The negative number —p, read “‘minus p,”’ 

is always preceded by the negative sign. Positive and negative numbers are 

often called signed numbers. If p is any positive number, it is convenient 
to refer to —p as its corresponding negative number. Thus, —S is the 

corresponding negative number of 5. 

The absolute value of any number a, designated by |a|, is its numerical or 

ordinary arithmetical value without regard to sign. Thus |5| = 5 and 

|—2| = 2. Evidently any positive number and its corresponding negative 
number have the same absolute value. 

In referring to signed numbers above, we used the positive and negative 

signs as signs of quality to denote “positive number” or “negative number.” 

However, these signs have also been previously used as signs of operation. 

This double use or significance of the positive and negative signs is 
justified by the theorems which follow. 

Theorem 1. Zhe sum of any positive number and its corresponding 

negative number is zero. 

PROOF. Let a be any positive number so that —a is its corresponding 
negative number. Then, by relation (6) above, 

a+(—a)=a+(0— a). 
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Now in relation (3), the definition of subtraction, if we set c = 0, we 
have a + (0 — a) = 0, so that the right member of the preceding equation 
becomes zero. 

Hence, a + (—a) = 0. 

This completes the proof. 

A simple illustration of this theorem is 5 + (—5) = 0. 

Theorem 2. The operation of adding a negative number is equivalent to 
the operation of subtracting a positive number of the same absolute value. 

PROOF. Let a be any number, and let b represent a positive number so 

that —bd is its corresponding negative number. We are to prove that 

(7) a+(—b)=a-—b. 

By the uniqueness law of addition (Sec. 2.3), let 

(8) a+ (—b)=c. 

Adding 6 to both sides (equality law, Sec. 2.3), 

[a -F —))| 0 "c= D. 

whence a + [(—b) + 6] = c + 5b by the associative law. 

By Theorem 1, (—b)+5=0. 

Hence, a+0=c+5), 

and by (4), a=c+b, 

whence, by relations (1) and (2), we have 

(9) C—a— DP. 

Then from (8) and (9) we have the required result (7). 

By means of Theorem 2 and the definition of subtraction, we may also 

establish 

Theorem 3. The operation of subtracting a negative number is equivalent 

to the operation of adding a positive number of the same absolute value. 

That is, if a is any number, and if 5 is a positive number so that —h is 

its corresponding negative number, then 

@—(—b) =a +b. 

The proof of this theorem is left as an exercise to the student. 
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We are now in a position to give a complete statement of algebraic 

addition in 

Theorem 4. Let a, b, and p=a-+b be three positive numbers so that 

—a, —b, and —p are their respective corresponding negative numbers. 
Then the following relations hold for algebraic addition: 

ILa+b=p. 

Wl. —a + (—b) = —a—b= —(a+ b)= —p. 

Ill. Ifa > b, thena + (—b) =a— b. 

If a < b, thena + (—b) =a —b= —(b — a). 

Relation I is arithmetic and a part of the hypothesis. Relations II and HI 

follow from Theorem 2 and relation (5). 

These relations may be stated as follows: 

land II. To add two numbers with like signs, add their absolute values 

and prefix their common sign to the sum. 
Ill. To add two numbers with unlike signs, subtract the smaller 

absolute value from the larger absolute value and prefix the sign of the 

number having the larger absolute value to the difference. 

The following simple examples illustrate these relations. 

Pee 

(—2) + (—5) = —2 —5 = -—(2 4+ 5) = —7. 

(—2) + (5) = —24+5=5-—-2 53. 

(2) + (—5) = 2 —5 = —(5 — 2) = —3. 

The relations in Theorem 4 may be extended to three or more numbers. 

As a direct consequence of Theorems 2, 3, and 4, we have the procedure 

for subtraction as stated in 

Theorem 5. The operation of subtracting one number from another 

consists in changing the sign of the subtrahend and then proceeding as in 
algebraic addition (Theorem 4). 

At this point we call attention to a simple but important property 

connecting positive and negative numbers and zero. Let a be a positive 
number so that —a is a negative number. Then by relation (4) we have 

a+0=a, 

whence, by the definition of subtraction, relation (2), we have 

(10) a—O=a. 

By Theorem 3, O— (—a) = 0+ a. 

whence, from relation (4), we have 

(11) 0 — (—a) =a. 



Sec. 4 Subtraction 17 

Now, by our previous definition of “greater than,” it follows from (10) 
that 

(12) G0, 

and, from (11), that 0 > —a, or 

(13) —a<0. 

From relations (12) and (13) we have 

Theorem 6. A positive number is greater than zero; a negative number 
is less than zero. 

From this theorem it follows that zero is neither a positive nor a negative 
number. Accordingly, by the term non-negative numbers, we mean all 
positive numbers and zero. If a is such a number we write a > 0, which 
is read “‘a is greater than or equal to zero.” 

We now illustrate the operations of algebraic addition and subtraction 
by means of several examples. 

Example 1. Find the sum of the following algebraic expressions: 
x + 2x°y — 4xry?, 223 — 4a7y + 3y3, 2xy? — 4y%. 

SOLUTION. We first write the expressions so that similar terms appear 

in the same column. Then we apply the rules of addition as given by 
Theorem 4. The result is the following arrangement: 

a? + 2a°y — 4ay* 

2x? — 4z%y + 3 

2ay? — 4y° 

Sum = 32° — 2a°y — 2ay®— yy. 

Example 2. Find the remainder obtained by subtracting a? — 3a” + 

4a — 7 from 2a? + a® — 3a — 5. 

SOLUTION. We write the subtrahend below the minuend so that similar 

terms appear in the same column. Then considering the sign of each term 

in the subtrahend to be changed, we add similar terms in accordance with 

Theorem 5. The work is exhibited below. 

Minuend Qa? a — 3a1— 5 

Subtrahend he ea, Bip ie 5 

Remainder = a® + 4a2 — 7a +2. 

The student may find it easier to actually change the sign of each term in the 

subtrahend and then add. 
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Addition and subtraction of algebraic expressions are often involved 

with the symbols of grouping (Sec. 2.3). The simplification of such 

expressions requires the removal of these symbols. From our previous 

results we have the following procedure for an algebraic expression 

enclosed in parentheses: 
If preceded by the plus sign, the parentheses may be removed without 

any changes; if preceded by the minus sign, the parentheses may be 
removed, provided that the sign of each of the enclosed terms is changed. 

If an expression involves more than one symbol of grouping, such 

symbols may be removed in any order. Often, however, it is simpler to 
remove one symbol at a time, removing the innermost symbol at each 

step. 

Example 3. Simplify the expression: 

5a — (2a — {4a + 2b + [a — 35]}). 

SOLUTION. Removing the brackets first, we have 

5a — (2a — {4a + 2b + a — 30}) 

= 5a — (2a — 4a — 2b — a + 35) 

= 5a — 2a + 4a 4+ 264+ a — 3b = 8a — b. 

With practice the student may perform two or more steps at a time and 

shorten the simplification considerably. 

EXERCISES. GROUP 1 

In each of Exs. 1—5, find the sum of the given algebraic expressions. 

1. 2a? — 2a®b + 263, 3a2b — 4ab2 — 45°, 2ab? — a’. 

2. 4m? — 3mn + 2n?, 6mn — 2n? + 5, 3n2 — 3 — 2m?. 

3, w® — day + 3y?, 20% + 2ay — 2y?, Qay — y? — 2, 

4, 303 — 8u2 + On, —a® + 3a? — 8, 2x3 — 2x? — Ta + 5. 

5. c2 + 2cd — 2d, 3c — 3cd — 2d, c? + 4d — 2c + 2d?. 

In each of Exs. 6-10, find the remainder obtained by subtracting the second 

expression from the first. 

. 3a — 2b + 4c —d, 2a + b — 3c —d. 

a? — 4a? + 2x — 5, —a3 + Qu? — 3x — 3, 

a® — 3a*b + 3ab? — b3, a® — 4a2b + 2ab? + b, 

. 2a + 4by — 2cy? + dy, 2dy® — 2by — a + 3cy?. 

. mm + 6m — Tm? + 8m — 9, 2m3 + 3m? — 4m — 3. So OND 
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In Exs. 11-15, A = a5 + 22? — 32 +1, B = 2x3 — a + 4¢ —7, and 
Gi= a2 Pi? — 62 — 2. 

ll. FindA +B-—C. 12. Find A —-B+C. 

13. Find A —B—C. 14. Find B-—A++C. 

15. Find B — A —C. 

16. Show that the sum of all the expressions in Exs. 11-15 is equal to the 
expression in Ex. 11. 

In each of Exs. 17-21, simplify the given expression. 

17.5 -—{2+3-—(4—3 —2) +[5 — 8}. 

18.4 +[5 —(6 —9 + {7 — 2}) —(i2 — 5)]. 

19. @ + 2y — (4y — a + [3x — 2y] — {2x — 2y}). 

20. 4a — [6b + {2a — Bb +a —b + 4a}}]. 
21. m + 2n — {3m — 2m +n — (2n —[m — 4n))}. 
22. (a) Find the number which must be added to —8 to give a sum of 15. 

(6) Find the number which must be added to 7 to give a sum of —3. 

23. (a) Find the number which must be subtracted from 4 to give a remainder 

of 6. (b) Find the number which must be subtracted from —11 to give a 

remainder of 4. 

24. (a) Find the number which must be diminished by 8 to give a remainder 
of —2. (6) Find the number which must be diminished by —7 to give a re- 
mainder of 4. 

25. Find the expression which must be added to 3a — 2b + 4c to give a sum 
Oh ae 50). 

26. Find the expression which must be subtracted from 4x + 2y — 7 to give 

a remainder of 3x — y + 5. 

27. Find the expression which must be diminished by 2m — 2n + 3p to give a 

remainder of 4m + n — 2p. 

Each of Exs. 28-31 refers to a problem in subtraction. 

28. The minuend is 2a2 + 2ab — b?; the remainder is a? + 3ab — 2b”. Find 

the subtrahend. 

29. The subtrahend is «2 + 3x — 7; the remainder is 3x2 — 3x + 4. Find 

the minuend. 

30. The remainder is x2 + 2xy — 3y?; the minuend is 3x? — 2xy + y?. Find 

the subtrahend. 

31. The remainder is a? + 3a2 — 2a +5; the subtrahend is 2a* — 2a? + 

a — 5. Find the minuend. 

32. By means of the definition of “greater than,” verify the following relations: 

Qs Ss) s =Op 2S Sy 

33. If a is a positive number, verify the following relations: —3a > —Sa; 

a> —2a; —4a < —a. 
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34. Show how the uniqueness law of addition may be extended to three or 

more numbers. 

35. Show how the commutative law of addition may be extended to three or 

more numbers. 

36. Show how the associative law of addition may be extended to four or 

more numbers. 

37. Prove that the sum of any negative number and its absolute value is equal 

to zero. 

38. Establish Theorem 3 of Sec. 2.4. 

39. Give a detailed statement of the proof of Theorem 4 of Sec. 2.4. 

40. Give a detailed statement of the proof of Theorem 5 of Sec. 2.4. 

2.5. MULTIPLICATION 

As noted in Sec. 1.2, multiplication, like addition, is a postulated 

operation of algebra. It is characterized by five postulates or laws 
analogous to those of addition (Sec. 2.3). In stating these laws, we observe 

that the symbol of multiplication, x or -, is often omitted in expressing 
the operation for letters. Thus, a x b, a: b, and ab each have the same 

significance. 

(1) Existence law. Multiplication is always possible. That is, it is 

always possible to perform this operation for any two or more numbers; 
the result is again a number. 

(2) Uniqueness law. Multiplication is unique. That is, for any two given 

numbers a and 5, there is one and only one number c such that ab = c. 
The unique number c is called the product of a and b which are termed its 

factors. The factors a and b are also called the multiplicand and multiplier, 
respectively. 

(3) Commutative law. Multiplication is commutative. That is, if a and b 

are any two numbers, then ab = ba. In other words, the product of two 
(or more) numbers is independent of the order of multiplication. 

Example, 2 X= Sx, 

(4) Associative law. Multiplication is associative. That is, if a, b, and c 

are any three numbers, then (ab)c = a(bc). In other words, the product 

of three (or more) numbers is independent of the order in which they are 
grouped. 

Example, (225)8 = 259.6): 

(5) Equality law. If a, b, and c are any numbers such that a = b, then 
(He = Inte. 
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The student will recognize this law as the familiar axiom that if equal 
numbers be multiplied by equal numbers, the products are equal. 

Multiplication and addition are connected by the important 
Distributive law. Multiplication is distributive with respect to addition. 
That is, if a, b, and c are any three numbers, then a(b + c) = ab + ac. 

Example. 324+7)=3x2+3' 7. 

These laws may be extended to any number of quantities. 

We shall now derive some of the fundamental properties of multiplica- 
tion. We begin by establishing an extension to the distributive law. 

Theorem 7. The operation of multiplication is distributive with respect 

to subtraction. That is, for any three numbers a, b, c, 

a(b — c) = ab — ac. 

PROOF. Let 

(1) b=—cC= 2, 

whence, by the definition of subtraction (Sec. 2.4), 

(8 ie 

Then, by the equality law (5), 

ab = a(c + 2), 

whence, by the distributive law above, 

ab = ac + az, 

and, by the definition of subtraction, 

ax = ab — ac. 

Replacing « in this last relation by its value given in (1), 

a(b — c) = ab — ac: 

This completes the proof. 

We next establish 

Theorem 8. The product of any number and zero is equal to zero. 

PROOF. Let a be any number. Then by the definition of zero (Sec. 1.3), 

G0 1a DD) 

By Theorem 7, = ab — ab 

By definition of zero, =U) 

This completes the proof. 
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In the next two theorems we establish the law of signs for multiplica- 

tion. For this purpose we will require the following: 

ASSUMPTION. The product of two positive numbers is a positive number. 

Theorem 9. The product of a positive number and a negative number is a 

negative number. 

proor. Let a and b be any positive numbers so that —A is a negative 

number. Let 

(2) a(—b) = «. 

By the equality law for addition (Sec. 2.3), 

a—b) +ab=x+ ab, 

whence, by the distributive law, 

al(—b) + b] =x + ab. 

But, by the definition of zero, (—b) + b = 0. 

Hence, a:‘O0=a+ ab. 

By Theorem 8, 0=2-+ ab, 

whence, by the definition of subtraction, 

x=0-—ab, 

and, by relation (6) of Sec. 2.4, x = —ab,so that from (2), a/—b) = —ab. 

Now since a and b are both positive, it follows from our assumption 

above that their product ab is positive; thus —ab is a negative number. 
This completes the proof. 

Theorem 10. The product of two negative numbers is a positive number. 

PROOF. Let a and b be any two positive numbers so that —a and —b 
are negative numbers. Let 

(3) (—a)(—b) = «. 
Then by the equality law for addition, 

(—a)(—b) + a(—b) = & + a(—5d). 

Then, by the distributive law and Theorem 9, 

(—)b)[(—a) + a] = x — ab, 

whence, by definition of zero, (—b) : 0 = a — ab. 

By Theorem 8, 0 = x — ab, 

whence, by definition of subtraction, 0 + ab = 2, 

and, by relation (4) of Sec. 2.4, ab = 2, 

so that from (3), (—a)(—b) = ab. 
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Moreover, since a and b are both positive, ab is positive by our postulate 
above, and the theorem is established. 

From Theorems 9 and 10 we have the 

Rule of Signs for Multiplication 

I. The product of two numbers of like sign is positive; the product of 
two numbers of unlike sign is negative. 

2. In general, the product of any number of factors is positive if there 
are either no negative factors or else an even number of negative factors; 
the product is negative if there are an odd number of negative factors. 

Examples. Dex qa 10: 

(2)(—5) = —(2)(5) = —10. 

(—2)(—5) = +(2)(5) = 10. 

(2)(—3)(—5) = +(2)(3)(5) = 30. 

(2)(3)(—5) = —(2)(3)(5) = —30. 

We are now in a position to establish a very important theorem to 
which we shall refer later. This theorem, the converse of Theorem 8, is 

stated as 

Theorem 11. /f the product of two numbers is equal to zero, at least one 

of these numbers is equal to zero. 

Proor. Let a and b be two numbers such that 

aly = 0. 

If a = 0, the theorem follows immediately. Suppose a ¢ 0 (read “‘a is not 

equal to zero”’); then, to prove our theorem we must show that b = 0. 
Assume, contrary to the theorem, that b 4 0. Since both a and } are now 

assumed different from zero, each must be either positive or negative by 
Theorem 6 (Sec. 2.4). If they agree in sign, ab is positive; if opposite in 
sign, ab is negative by the rule of signs. But this contradicts our hypothesis 

that ab = 0. Hence our assumption that b # 0 is false, and the theorem 

is established. 

Corollary. If the product of two or more factors is equal to zero, at least 

one of these factors is equal to zero. 

We now consider the actual multiplication of algebraic expressions. 

In performing this operation we often obtain considerable economy in 

expressing the terms of a product by making use of certain results called 

index laws or laws of exponents. We have already noted, in connection 
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with the operation of involution (Sec. 1.3), that by the notation a", where 

a is any number and n is a positive integer called the exponent or index, 
we mean the product of factors each equal to a. We also refer to a” as 

the nth power of a. In particular, the exponent | is generally omitted 
while a? and a are also called the square of a and the cube of a, respectively. 
At this time we require the following three index laws, where a and 6 are 
any numbers and m and n are positive integers. 

ile Oa aa, 

Example. PLD kale Bo he 

I. (Ga. 

Example. (2°)2 == 2% 

IIL. (ab)™ = a™b™. 

Example. (Sra EAs 

These index laws are very easily established. Thus, for Index Law I, 

we have, by the associative law of multiplication, 

aa" = (ae a> a= tom factors )\(@ <add 110 f factors) 

=a-a:‘a:::tom+n factors 

ee 

The proofs of Index Laws I and III are similar and are left as exercises 
to the student. 

By means of these index laws and the rule of signs, we may obtain the 
product of two or more monomials as illustrated in 

Example 1. Find the indicated products: 

(a) (2ab)(—3ab?); (b) (—4ary?z)(—2a?yz)(ayz2*) ; 

(C) (3m): (d) (—2p?q)%. 
SOLUTION. 

(a) (2a"b)(—3ab?) = —6a**1 b+? = —6a8D3. 

(b) (—4ary2z)(—222yz)(wy22) = BaltOH y2HtH1 71142 — Baty’ 

(c) (—3m?n)? = (—3)?(m?)?(n8)? = 9mAn’, 

(d) (—2p2g)? = (—2)(p2)q3 = —8p%q’. 

We next consider the product of a monomial and a polynomial. The 
procedure here follows immediately from the distributive law as illustrated 
in 

Example 2. Evaluate a®b (2ax — 3by — 2ab?). 
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SOLUTION. By the distributive law, 

a’b(2ax — 3by — 2ab*) = (a®b)(2ax) — (a*b)(3by) — (a®b)(2ab?) 

= 2abbx — 3a®b2y — 20353. 

Finally, we consider the product of two polynomials. Once again the 
procedure follows from the distributive law. To show this we will, for 
simplicity, consider the product of two binomials. Thus, by the distribu- 
tive law, 

(a + bx + y) = (a+ bx + (at by 

Again, by the distributive law, = ax + bx + ay + by. 

Thus, we see, as in the case of Example 2, that the product of two expres- 

sions consists of the algebraic sum of the products of monomials obtained 
by multiplying each term in the multiplicand by each term in the multi- 
plier. In actual practice it is convenient to write the multiplier under the 

multiplicand, each in descending powers of some letter, and then arrange 
the products in rows so that similar terms appear under each other to 
facilitate addition. This procedure is illustrated in the following example. 

Example 3. Multiply x? + xy — 2y? by 3y? — 2ay 4+ 2°. 

SOLUTION. We first write the multiplicand and multiplier in descending 

powers of x. The operation of multiplication then appears as follows: 

x’+ xy —2y? multiplicand 

x? —2ay + 3y? multiplier 

(1) ey — ley 
(2) — 2a°y — 2a*y” + 4ay?* 

(3) 3x7y" + 32y* — 6y* 

Product a — ay — x*y* + Tay? — b6y*. 

Lines (1), (2), and (3) are obtained by multiplying each term in the 

multiplicand by 2*, —2zy, and 3y?, respectively. The product is then the 

algebraic sum of these three lines. 

NoTES 1. The accuracy of algebraic operations may often be partially checked 

by substituting numerical values for the letters involved. Thus, in the preceding 

example, if we let x = 2 and y = 3, we have the following values: 

Multiplicand = 4 + (2)3) — 2Q9) = —8. 

Multiplier = 4 — 2(2)(3) + 3(9) = 19. 

Product = 16 — (8)(3) — (4)(9) + 7(2)27) — 6(81) = —152, 

which agrees with (—8)(19). 
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2. If both the multiplicand and multiplier are homogeneous polynomials, the 

product is also a homogeneous polynomial. The preceding example illustrates 

this. 

2.6. SPECIAL PRODUCTS 

We list here certain special products which are useful in various 

problems of multiplication and factoring. The student should memorize 
the following nine types, which may be established by direct multiplication. 

(a + b)? = a® + 2ab + B?. 

(a — b)? = a® — 2ab + B. 

. (a+ bla — b) =a — B?. 

. (a + ala + b) = a + (a + b)x + ab. 

. (ax + b)(cx + d) = acu® + (ad + bc)x + bd. 

(a+ bf = a + 3a*b + 3ab? + 6B. 

(a — bf = a — 3a2b +3ab? — b. 

(a+ b\(a@—ab+ Bh) =a + B. 

. (a — b)(a® + ab + 6?) = & — BP. COIN AAR WN 

By the use of double signs it is possible to combine certain pairs of these 
types in one statement. Thus, types | and 2 may be expressed in the single 
statement: 

(a + b)? = a? + 2ab + B?, 

from which type | is obtained by using the upper signs and type 2 by using 
the lower signs. A similar remark applies to types 6 and 7 and types 8 

and. 97. 

Some types may be readily expressed in words. Thus, type | may be 
stated as follows: The square of the sum of any two numbers is equal to 

the sum of the squares of these numbers plus twice their product. 

At this point attention is called to a very important skill which the 

student should acquire as early as possible, namely, the ability to recognize 

mathematical forms and the generalizations and extensions obtainable 

from such forms. Thus, in the statement of type 1, since the operation 

applies to the square of the sum of any two numbers, such numbers may 

be represented in a great variety of forms, but the operation is performed 
in the same basic way. This is illustrated in 

Example 1. Evaluate [x2 + 2” + y — 3}. 

SOLUTION. [x + 2a + y — 3]? = [(a? + 2x) + (y — 3)/? 
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By type 1, = (a? + 2x)? + 2(a2 + 2x)(y — 3) + (y — 3)? 

= (x* + 423 + 4x?) + (2a?y — 62? + day — 12x) + (y? — 6y + 9) 

= a4 + 4a 4 222y — 20? + dary + y? — 12” — 6y + 9. 

Similarly, the student should recognize that type 3 concerns the product 
of the sum and difference of the same two quantities. An illustration of this 
is given in 

Example 2. Find the product of x + y —2 and a— y +2. 

SOLUTION. We can, of course, obtain the product by direct multiplica- 
tion, as in illustrative Example 3 of Sec. 2.5. However, we may write 

a 2) — 9 +2) =a 7 (y — 2)|le —y —2)| 
By type 3, =? —yia 2)? 

By type 2, = x? — (y? — dy + 4) 
=x? — y+ dy — 4. 

Example 3. Evaluate (32? — 2y)*. 

SOLUTION. By type 7, we have 

(32? — 2y)? = (327)? — 3(3x?)?(2y) + 3(3a7)(2y)? — (2y)? 

= 272° — S54aty + 36x2y? — 8y?. 

Finally, we consider the square of any polynomial. 

By direct multiplication, we have 

(atb+cP=@4+ 024+ c? 4+ 2ab 4+ 2ac + 2b. 

This result is a particular example of 

Theorem 12. The square of any polynomial is equal to the sum of the 

squares of each of its terms plus twice the product of each term by each of its 

following terms. 

This theorem may be established by a method of proof called mathemati- 

cal induction, which will be studied later. The student should observe that 

types 1 and 2 are special cases of this theorem. He should also use this 

theorem to obtain the result of illustrative Example 1. 

EXERCISES. GROUP 2 

In each of Exs. 1-15, find the indicated product. 

1. (8a2b)( —2ab?). 2. (—ab?c)(3a*bc)(2abc?). 

3. xy?(w% — 2y + 4). 4, (2a — 5y)(4x + 2y?). 

5. (a + 2ab — 2b*)(3a — 7b). 6. (a2 — 3ay + y*)(2e — 3y 4+ 2). 
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7. (a — 2ab + 4b2)(a + 2b). Check this problem by letting a =2 and 

(b) 3}, 

8. (a2 + y? + 22 — ay — xz — y2a +y +2). 

9. (8 — m? + m — 1)(—m?* + mm — m + 1). 

10. (2 + 3x2 + 23)\(x2 — 1 + 42). 
ll.(@w@+ay+aet+a). 

12. (a? — x — 1)*%(a? + @ + 1). 

13. (a + ab + a®b? + ab® + b*\(a — db). 

14. (2 —ab+h+a+b+1)\(a+b-1). 

15. (@ —a+t+ l(a —a@ + 1a? +a +1). Check this problem by letting 

a=2. ; 

16. Show how the uniqueness law of multiplication may be extended to the 
product of three or more numbers. 

17. Show how the commutative law of multiplication may be extended to the 
product of three or more numbers. 

18. Show how the associative law of multiplication may be extended to the 

product of four or more numbers. 

19. Show how the distributive law may be extended to four or more numbers. 

20. Establish the corollary to Theorem 11 (Sec. 2.5). 

21. Verify the numerical examples given to illustrate Index Laws I, H, and III 
(Sec: 2.5): 

22. Establish Index Laws II and III (Sec. 2.5). 

23. By means of examples illustrate the difference between Index Laws I and Ii 
(Secs25): 

24. Show that Index Law I may be extended to three or more factors, that is, 
show that @@@"%a? <q" iq" Pigs awk. 

25. Show that Index Law HI may be extended to three or more factors, that is, 
show that (abc hacsl Te 2) = Qrhmem... gm, 

26. Show that Index Law III may be generalized in the form (a?b%c" -- + )™ = 
Qempimerm Snon ss 

27. Show that the product of two homogeneous polynomials is also a homo- 
geneous polynomial and that the degree of the product is equal to the sum of the 
degrees of the multiplicand and multiplier. 

Exercises 28-34 refer to the nine types of special products listed in Sec. 2.6. 

28. By actual multiplication, establish types 1, 2, and 3. 

29. By actual multiplication, establish types 4 and 5. 

30. By actual multiplication, establish types 6 and 7. 

31. By actual multiplication, establish types 8 and 9. 

32. Express each of types 2 and 3 in words. 

33. Express each of types 6 and 7 in words. 
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34. By means of the use of double signs, express in one statement: (a) types 
6 and 7; (b) types 8 and 9. 

35. Verify the result of Example | of Sec. 2.6 by using Theorem 12. 

In Exs. 36-50 evaluate the given expressions by means of the type forms and 
Theorem 12 of Sec. 2.6. 

36. (2a? — 3y?)?, 37. (a? — ab)*. 

38. (a? + 3)(a? — 3). 39. (ax + xy\(ax — wy). 

40. (a? + @ + 1)\(z2? + 2 — 1), 41. (a-—b+c)\atb+o). 

42. (2m + 5)\Gx — 2). 43. (42 — 2)\(3x + 2). 
44. (2c? + d?). 45. (3m — 2n?)3, 

46. (a + b)t. 47. (at + 1)(x? + 1)(2? — 1). 

48. (v2 +2 + 1)? —@ 4+ 1)(at — 2? + 1). 

49. (a —b +c —d)*. 50. (2w — x + 2y — z)*. 

2.7. DIVISION 

In Sec. 1.3 we described division as the operation inverse to the operation 
of multiplication, Division is defined in the following 

ASSUMPTION. For any two numbers a and c, a ¢ 0, there exists one and 

only one number 6 such that 

(1) GUIs, 

This number 4 is then given by the relation 

(2) b=<, a0, 
a 

which is read “‘b equals c divided by a,” and we say that b is the quotient 

obtained by dividing the dividend c by the divisor a. 

10 Example. 5-2 = 10, whence 2 = °;”. 

We also say that b is the number by which the number a must be multiplied 

in order to produce the number c. Thus, from (1) and (2), we have the 

relation 

(3) as— = ¢; aee.0; 

note. In relation (2), the operation of division is indicated by a horizontal 

line. It may also be indicated by an oblique line or by the symbol +. Thus, 

Cc 
. . 

-, cla, and c + a each have the same significance. 
a 
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The operation of division is subject to the 
Equality Law. If a, b, and c are any numbers such that a = bandc £ 0, 

then ajc = die. 
The student will recognize this law as the familiar axiom that if equal 

numbers be divided by equal (nonzero) numbers, the quotients are equal. 
It is important to note in the assumption above that the result of division 

is unique. It is also important to observe that division is possible in every 

case except when the divisor is zero. This follows from 

Theorem 13. Division by zero is an excluded operation. 

Proor. In defining division by means of relation (1) above, namely, 

(1) ab =c, 

we specified that the number b is unique provided that a ~ 0. Suppose, 

contrary to this definition, that a = 0. Since no restrictions are placed on 

the number c, we consider two cases. 

Case (1). c = 0. In this case, relation (1) takes the form 

(4) ab = 0. 

But if a = 0, b may be any number in relation (4) by Theorem 8 (Sec. 2.5). 
But this is contrary to our requirement of the uniqueness of b. 

Case (2). c #0. In this case, if a = 0 in relation (1), c must be equal to 

zero by Theorem 8 (Sec. 2.5), a contradiction. 

Hence, in either case, the assumption that a = 0 leads to a contra- 

diction, and the theorem follows. 

The student should not infer from the preceding theorem that it is 
impossible to divide into zero. For this situation we have 

Theorem 14. If zero is divided by any nonzero number, the quotient 
is Zero. 

PROOF. For c = 0 in relation (1) above, we have 

(4) ab = 0. 

Since a # 0, it follows from Theorem 11 (Sec. 2.5) that b = 0. That is, in 

relation (2) above, b = c/a = 0/a = 0. This completes the proof. 

From relation (1) above, for the particular case where c = a 4 0, we 
have 

(5) ab 

b 

I 

ais 8 

») 

whence 
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In this case, the quotient b is called unity, and is represented by 1, the 
symbol for the positive integer one, and we write 

hee = i 
a 

whence, from (5), we have the relations 

aol Se, ie @= ay sine 

For the particular case where c = 1, relation (1) gives 

(6) ao = il. 

In this case the quotient 6 is called the reciprocal of a, and we write 

— a : Gi ==40) 
a 

whence from (6), a: u == |l, 
a 

From these results we have the following 

Properties of Unity 

1. The result of multiplying or dividing any number by unity is the 

original number. 
2. The product of any nonzero number and its reciprocal is equal to 

unity. 

We now derive the rule of signs for the operation of division. For this 
purpose we refer to relations (1) and (2) above, namely, 

(1) ab =c, 

(2) Fe 0, 
a 

By the rule of signs for multiplication (occu 2-5) mil cceanduceatesDoUl 

positive, or are both negative in (1), b must be positive. Also, if a is 

positive and c is negative, or if a is negative and c is positive in (1), 6 must 

be negative. Then, from relation (2), we have at once the 

Rule of Signs for Division 

The quotient of two numbers is positive or negative according to 

whether the dividend and divisor have like or unlike signs. 
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Hence, if a, b, and c are all positive, we may write 

Theorem 15. The product of two quotients a/b and c/d is another quotient 

given by the relation 

a a SN 
pea bd. 

PRooF. By the associative and commutative laws of multiplication 

(Sec. 2.5), we have 

Cee ye = (£-»)-(£-4) 
Dame b d 

By relation (3), = GE. 

whence, by the equality law of division, 

Oe ore, GE 
perks. 

Cc il 1 ac as G 

oroilar a — = —*-. 

y bd ode 

C ll 2 ac a G 

orollary 2. — =-'¢C=a--. 
y hata tas: Go 

a a l 1 Corollary 3. CPS ae orollary ig ee: a 7 

That is, to divide by a number is equivalent to multiplying by its reciprocal. 

Also, as a consequence of Theorem 15, we have, for m a positive integer, 

(Ca a:a-a-:-- to m factors gtr 
al ate oma el GR to m factors = ——————————_——- = — 
b lr toy 163 b-b:b-:-: to m factors lays 

That is, to the three index laws of Sec 2.5, we now add 

m gilt a p 

Index Law IV. (<) yee positive integer. 

Also, at this time, we will require 

Index Law V. For a ~ Oand mand n positive integers such that m > n, 
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For, by Index Law I (Sec. 2.5), we have 

(a™"\(a") = am nt" = a™, 

whence, by definition of division, a”—-" = - 

As a direct consequence of Theorem 15 and Index Law V, we have 

Theorem 16. Jf a and b are both different from zero, and m, n, r, and s 

are positive integers such thatm > n andr > 5, then 

ares = = 
nbs == Paes 

a 

NOTE. Theorem 16 may be extended to three or more quotients. 

In this section we confine the operation of division to rational integral 
expressions so that all exponents involved are positive. Negative and 
fractional exponents, and also zero as an exponent, will be considered in 

later sections. 

We are now prepared to divide one rational integral monomial by 
another of lower degree, as illustrated in 

Example 1. Perform the indicated divisions: 

(a) (6a°b*?) = (—2a?b); (b) (Sa8y8z) + 2a?yz; 

(c) (—4m4n®) = (—2m?n?). 

SOLUTION. From Theorems 15 and 16 we have 

5 = + — -— = —3gb. (a) —2a2b ae Pp 

mee ee ae Ae » 5 (b) eee 2 EO ay 1 a ay Ee 2 ee 2 

43 is 4 73 (c) —4m*n ine eee == iii 
2m®n? = —2 mn 

We next consider the division of a polynomial by a monomial. For 

this operation we have 

Theorem 17. The division of a polynomial by a monomial is effected by 

dividing each term of the polynomial by the monomial, and adding the 

resulting quotients. That is, 

CEPR eat eee he 
m m m m 
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proor. By Corollary 3 of Theorem 15, 

— (a+b+c) 
m m 

Distributive law of ee oe ay fae on ce 

multiplication (Sec. 2.5), m m m 

(1 laa ta He 
Corollary 3, Theorem 15, =—+-—+- 

Pine tees 

Example 2. Divide 2a°bx — 3a?b?y — 2a*b® by a°b. 

SOLUTION. By Theorem 17, we have 

2a*bx — 3a*b?y — 2a*b® — 2a®ba — 3a°*b?y | 20° 

a*b a*b a*b a*b 

= 2ax — 3by — 2ab?. 

This operation may be easily performed in one step. 
The student should compare this problem with illustrative Example 2 of 

Sen 2:5. 

Finally, we consider the problem of dividing one polynomial by another. 
In this operation we are required to obtain an expression (the quotient) 
which, when multiplied into the divisor, will produce the dividend. Hence 
the dividend is composed of all the partial products obtained from the 
multiplication of the divisor by each term of the quotient. (Compare the 

discussion in Sec. 2.5 preceding illustrative Example 3 on the product of 
two polynomials.) This is the basis of the 

Procedure in the Division of One Polynomial by Another 

1. Arrange both dividend and divisor according to the descending 
powers of some common letter. 

2. Divide the first term of the dividend by the first term of the divisor, and 
write the result as the first term of the quotient. Multiply the entire 
divisor by this term, and subtract the product from the dividend. 

3. Consider the remainder in Step 2 as a new dividend and repeat the 

process of Step2 to obtain the second term of the quotient. 

4. Continue this process until the remainder is either zero or of lower 
degree than the divisor. 

This procedure is illustrated in 

Example 3. Divide x* — ay — ay? + Tay — 6y4 by 2 + xy — 2y?. 
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SOLUTION. The operation appears as follows: 

x — 2xy + 3y” = quotient 

a + xy — 2y*)at — ay — a®y? + T2xy> — by! 
at + xy _ xy" 

—2aPy + ay? + Tay? 

—2a%y — 2x7? + day 

327y? oe 3xy> a2, 6y3 

327 y" + 3x? se, 6y3 

The student will find it highly instructive to compare this operation with 
the corresponding operation of multiplication exhibited in the solution 
of Example 3. of Sec. 2.5. 
When the remainder is zero, as in the above example, the division is 

termed exact and the dividend is said to be exactly divisible by the divisor 

which is then called an exact divisor or factor of the dividend. 

Let A represent the dividend, B the divisor, Q the quotient, and R the 

remainder for the operation of division. If R = 0, the division is exact, 

and we write 

whence 

A= BO. 

This relation shows that exact division may be checked by showing that 
the dividend is equal to the product of the divisor and quotient. 

If R 0, the division may be made exact if the original dividend is 

diminished by R. We then write 

A—R 
: a, 

whence A — R= BQ and 

(7) Ar BOE: 

Relation (7) shows that any operation in division may be checked by 

showing that the dividend is obtained by multiplying the divisor by the 

quotient and then adding the remainder to this product. 

If we divide relation (7) through by B, we obtain 

A R 
(8) Oe 
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Example 4. Divide a? — 3a? + 4a —7 bya +a—1. 

SOLUTION. The operation follows: 

a — 4 = quotient 

a® +a — 1)a® — 3a® + 4a —7 
a+a?—a 

—4a” + Sa 

—4a? — 4a +4 

9a — 11 = remainder. 

In accordance with relation (8), we may write the result as: 

3 2,2 es = a 3a" + 4a A Nee 9a i 

ae al ata—1 

The student should check this example by means of relation (7). 

EXERCISES. GROUP 3 

In each of Exs. 1-22, perform the indicated division and check the result. 

1. (8a4y32z?) + (—4a2y2z). 2. (—15a?2mPn*) + (—Sam?n?). 

3. (4abu? — 8b2x?y) + (2b2?). 4, (2a®mx?y) + 6a?nyz”) + (2ay). 

5. (2a + wy — 6y?) + (w + 2y). 6. («3 — y®) +(e — y). 

7. (3a? — 10ab + 3b?) + Ba — b). 8. (a2 + 5°) = (a + DB). 

9. (m* — n*) + (m +n). 10. (m* — n*) + (m — n). 

1, (vw + y°) = (@ + y). 12. (w — y®) + (w — y). 

13. (303 — S5x2y — 8xy? — 2y3) + Bx + y). 

14. (a — 4a4 + 3a® + 3a” — 3a + 2) + (a? —a — 2). 

15. (2a* — a’b — 6a*b? + Tab® — 2b*) + (a? + ab — 26°). 

16. (2%5 + 3a4 — 5x3 + 2x2 + Tx — 6) + (2a + x — 2). 

17. (20% + 3ay — 2y? — 2% + 6y — 4) + (a + 2y — 2). 

18. (v3 — 3a +a — 5) +(x — 2). 

19. (4a* + 2a® — 4a? + 3a — 7) + (2a — 1). 

20. (a + 22 — 3a + 4) + (a? — ax 4+ 2). 

21. (a* — a®b — ab® + b*) + (a2 + ab + B®). 

2. (a4 + 2x3 + 3a? — 4x + 2) + (av? +o? —&@ 4+ 1). 

. Solve Ex. 14 by arranging the dividend and divisor according to the 
ascending powers of a. 

24. Solve Ex. 16 by arranging the dividend and divisor according to the 
ascending powers of «. 
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25. Check Ex. 15 by letting a = 2 andb = 1. 

26. Check Ex. 17 by letting x = 1 andy = 1. 

27. Ina problem in exact division, the dividend is «3 + 3x2y + ay? — 2y3 and 
the quotient is x? + ay — y?. Find the divisor. 

28. In a problem in exact division, the dividend is at — y4 and the quotient is 
x? + ay + xy? + y®. Find the divisor. 

29. Show that 3x — 5 is a factor of 6x? — 31x 4+ 35. 

30. Show that a + b + c is a factor of a? — b? — 2be — ¢?. 

31. If 2x — 3y + 1 is a factor of 4x? — day — 3y? — 2x + Ty — 2, find the 
other factor. 

32. If a? + 2a — 1 is a factor of 2a* + 3a® — 6a? — 3a + 2, find the other 
factor. 

33. In a problem in division, the dividend is a* — 2a? + a — 3, the divisor is 
a + 3, and the quotient is a? — Sa + 16. Find the remainder without dividing. 

34. In a problem in division, the dividend is x* — 2x3 — x? — x —1, the 

divisor is «2 + x + 1, and the remainder is x — 2. Find the quotient. 

35. In a problem in division, the dividend is x° + 2x4 — x3 + 2x? — x 4 2, 

the quotient is «2 + 2x — 2, and the remainder is 3x? + 7x — 4. Find the 

divisor. 

36. Ina problem in division, the divisor is x? + 1, the quotient is x” + 2x +2, 

and the remainder is —4x2 — 1. Find the dividend. 

37. Prove Corollaries 1, 2, and 3 of Theorem 15 (Sec. 2.7). 

38. Establish Theorem 16 (Sec. 2.7). 

39. If one homogeneous polynomial is exactly divisible by another homo- 

geneous polynomial, show that the quotient is also a homogeneous polynomial 

whose degree is equal to the difference of the degrees of the dividend and 

divisor. 

40. Show that unity bears a relation to the operations of multiplication and 

division which is analogous to the relation that zero bears to the operations of 

addition and subtraction. 

2.8. NUMBER FIELD 

In anticipation of our discussion of factoring in the next article, we now 

consider an important concept in mathematics, namely, the concept of 

number field for which we have the following 

Definition. A set of numbers is said to constitute a number field provided 

that the sum, difference, product, and quotient (division by zero excluded) 

of any two equal or distinct numbers of the set are also numbers of the set. 
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The following sets of numbers are examples of number fields: 

(1) All rational numbers. 

(2) All real numbers. 

(3) All complex numbers. 

Let us now consider type 3 of the special products listed in Sec. 2.6, 

namely, 
(a+ bla — b) = a — B. 

Here, given the two factors a + b and a — b, we obtained their product 

a? — b?. Conversely, given the product a? — b?, the difference of the 
squares of two numbers, we obtain its factors a + b and a — 5, the sum 
and difference, respectively, of the two numbers. From this we may write, 
corresponding to the three types of number fields above, 

(1) 2 —1=(@+ 1)(a — 1). 

(2) 2% —2 = 2 — (V2)? = (2 + V2\(e@ — V2). 

(3) 2 +1 =2?—i7?= (@ + ix — i), 

where i = V —1 and i? = —1 (Sec. 1.3). 

The question now arises, how far shall we go in factoring? Although 

factoring is done in each of the three fields above, we shall, in general, 

confine our factoring to the field of rational numbers. That is, our factors 

shall be rational integral expressions with rational coefficients. Thus, in 

factoring a? — b*, we shall stop with the two factors noted above and not 
attempt to go further, and, for example, factor a — 5 in the form 

a—b=(Vat Vb\Va — Vb). 

An algebraic expression which is the product of two or more factors in 
a particular number field is said to be reducible in that number field, 
otherwise irreducible. Thus, in our three examples above, (1) is reducible 

in the field of rational numbers but (2) is not. Also, (3) is irreducible in 

the field of real numbers. 

Number fields are important in that a property or theorem which is true 

in one field may not be true in another field. 

2.9. FACTORING 

We have seen that in multiplication the problem is to obtain the product 
of two or more given expressions called the factors of that product. We 
now study the converse problem of obtaining the factors of a given product. 
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In accordance with the preceding article, we restrict such factoring to the 
field of rational numbers. 
We consider here the factorization of certain types of polynomials 

which are useful in later work. Most of these are naturally suggested by 
the various types of special products discussed in Sec. 2.6. 

(1) Common monomial factor. If each term of an expression has a 
common monomial factor, that monomial is a factor of the expression 
as a direct consequence of the distributive law (Sec. 2.5). In general, in 
factoring any expression, if a common factor is present, such a factor 
should be removed in the very first step. 

Example 1. Factor: (a) 2ab?2* — 4ab?xy + 6ab?y?. 

(b) 3m?n? + 3m'n? — 6mn. 

SOLUTION. (a) 2ab?2 — 4ab?xy + 6ab?y? = 2ab"(a? — 2ay + 3y?). 

(b) 3m?n? + 3m3n? — 6mn = 3mn(mn? + mn — 2). 

(2) Trinomial that is a perfect square. Types 1 and 2 of the special 
products of Sec. 2.6, 

(a+b)? = a? + 2ab + B, 

suggest the form assumed by a trinomial that is the square of the binomial 
sum or difference of two quantities. This is illustrated in 

Example 2. Factor 927 — 12xy + 4y?. 

SOLUTION. 9x? — 12xy + 4y? = (3x)? — 2(32)(2y) + (2y)” 

= (3% — 2y)*. 

(3) Difference of two squares. Factoring in this case is suggested by 
type 3 of the special products of Sec. 2.6, 

(a+ b(a—b) =a — B, 

which tells us that the difference of the squares of two quantities has two 
factors, one the sum and the other the difference of those two quantities. 

Example 3. Factor 4a‘x® — 25b%y?. 

SOLUTION. 4atx® — 25b%y* = (2a?x*)? — (5b3y")” 

= (2a?a3 + 5b3y")(2a?a? — Sb*y?). 

(4) General trinomial. Here we consider any trinomial other than a 

perfect square. The forms of the factors are then suggested by type 5 of 

the special products of Sec. 2.6, 

(ax + b)(cx + d) = acu? + (ad + bc)x + bd. 

Assuming that the given trinomial is factorable, our problem is to obtain 

four numbers a, b, c, and d such that a and c are factors of the coefficient 
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of «2, b and dare factors of the constant term, and the sum of the cross- 

products ad and bc is the coefficient of x. These numbers are obtained by 

trial, and the method is best illustrated by means of an example. 

Example 4. Factor 627 — lla — 10. 

SOLUTION. As a first trial we write factors of 6 and of —10 in two 

separate columns, thus 

: x sf and then take the sum of the cross-products: 6(—2) + 1(5) 

= —7. Since we wish this sum to be —11, we try a different selection of 

factors, thus 

lee | 

2° —5{’ 

—11, the coefficient of x. Hence, our factors are 3x + 2 and 2x — 5. 

for which the sum of the cross-products is 3(—5) + 2(2) = 

Notes 1. If the coefficient of x? is unity, as in type 4 of the special products of 
Sec. 2.6, the process is much simpler, for we must then merely determine two 

numbers whose sum and product are given. 
2. If the factors of a quadratic trinomial are not readily obtained by inspection, 

they may be found by a method which will be discussed later in connection with 
the quadratic function. 

(5) Polynomial of four terms. Some polynomials of four terms may be 
rearranged and grouped so as to exhibit a common factor. This is illus- 

trated in 

Example 5. Factor 12xy + 3y — 8x — 2. 

SOLUTION. 1l2xy + 3y — 84 — 2 = 3y(4xu + 1) — 2(4x% + 1) 

= (4x + By — 2). 
(6) Polynomial that is a perfect cube. We restrict this type to where the 

given polynomial is the cube of a binomial. The form of such a poly- 
nomial is suggested by types 6 and 7 of the special products of Sec. 2.6, 

(a+ bP = a + 3a*b + 3ab? + B. 

Example 6. Factor 82° — 36a?y + 54ay? — 27y’. 

SOLUTION. That this polynomial may possibly be a perfect cube is 
suggested by the fact that the first and last terms are perfect cubes, namely, 
(2x)? and (—3y)?. We then attempt to write the given polynomial in the 
form of the cube above, thus 

8a* — 36a°y + S4ay® — 27y3 = (2x)8 — 3(2x)?(3y) + 3(2a)(3y)? — (3y)? 

= (2x — 3y)'. 
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(7) Sum and difference of two cubes. The factors in this case are suggested 
by types 8 and 9 of the special products of Sec. 2.6, 

(at b(@ Fab+bh)=2 +B. 

Example 7. Factor 82° + 27y?. 

SOLUTION. 82° + 27y® = (222)3 + (3y)8 

= (2a* + 3y)((20?? — [2x7 ][3y] + [3y]?) 
= (227 + 3y)(4at — 6a2y + 9y?). 

NoTE 3. We shall later prove by means of mathematical induction (Chapter 7) 
that if 7 is a positive integer, 

x” + y” has a factor « + y when n is odd, 

x” — y” has a factor « — y when n is odd or even, 

x” — y” has a factor x + y when 7 is even. 

In the examples above, the given expressions are readily seen to belong 
to one of the type forms. Very often, however, a given expression which 

does not appear to belong to a particular type may be made so by a 
transformation of some kind, such as a rearrangement of terms or by the 
addition and subtraction of a particular term. The process is illustrated 

in the examples following. Here again, as noted in Sec. 2.6, the ability 
to recognize basic mathematical forms is required. 

Example 8. Factor a? + 2ab + b? — 3a — 3b — 4. 

SOLUTION. The first three terms represent (a + 5)’, and the next two 

terms represent —3(a + b). This suggests that we have a general trinomial 

(type 4) in the quantity a + b. Hence we write 

a + 2ab + Bb? — 3a — 3b —4 = (a+ 5)? — 3(a + 5B) —4 

By type 4, = (fa + 6] +1)([a + 4] —4) 
=(a+b+ l)\(a@+b—4). 

Example 9. Factor x* + 42? + 16. 

SOLUTION. If the second term were 827, we would have a perfect square. 

This suggests adding 4x”, which would have to be balanced by subtracting 

Az?. The transformed expression would then be factorable. Thus, 

at + 4a? + 16 = vt + 822 + 16 — 40? 

= (x? + 4)? — (2x) 
By type 3, = (a? + 4 + 2x)(2? + 4 — 22). 
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2.10. LOWEST COMMON MULTIPLE 

A polynomial that is exactly divisible by a second polynomial is said to 

be a multiple of that polynomial. 
Thus, x? — y* is a multiple of x + y. 

A polynomial that is a multiple of two or more other polynomials is 

called a common multiple of these polynomials. 
Thus, x? — y? is acommon multiple of x + y and x — y. 

Evidently two or more polynomials may have more than one common 
multiple. That common multiple of two or more polynomials which is of 
least degree is called their /owest common multiple, generally designated 

by the abbreviation L.C.M. 
The determination of the L.C.M. follows at once from the definition, 

that is, the L.C.M. of two or more polynomials is equal to the product of 
all the different factors of these polynomials provided that each factor is 

taken to a power equal to the greatest number of times it appears in any 

one polynomial. 
Because we will later have occasion to use the L.C.M. of two or more 

polynomials, we illustrate the determination by means of an example. 

Example. Find the L.C.M. of 2? — y?, 27 + 2xy + y?, and 2° + y?. 

SOLUTION. We first write each polynomial in factored form, thus 

a — y? = (a + ya — y). 

a + day + y® = (e+). 
w+ y? = (x + y)(2? — zy + y’). 

The different factors are x + y, x — y, and a2 — ay + y®. The-greatest 

number of times that each factor occurs in any one polynomial is twice 

for x + y and once each for x — y and 2? — ay + y?. Hence, 

L.C.M. = (# + y)*(x — y)(x? — wy + y?). 

NOTE. It is generally convenient to leave the L.C.M. in its factored form. 

EXERCISES. GROUP 4 

In each of Exs. 1-30, factor the given expression. 

1. 2a3y? — Gary, 2. 16a* — 24a2b + 9b. 

3. 8b?m™ + 24b2mn + 18b?n?. 4. 9u? — 4v?. 

5. 2 + 2ay + y? — a’, 6. a? + b? — c? — 2ab. 

7. m? — b% — 2mn + ne. 8. « — x — 20, 

9. 6a2 + 5a — 6. 10. 6b? + 13b — 28, 

11. 12”? — 29” + 15, 12. 2x? + 3xy — 2y?, 
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13. 10m? — 13mn — 3n?. 14. 2a” + ab — 6b. 

15. 22+ 2ry +y2+a+y —6. 16. x? — 2xy + y? + 6x — by + 8. 
17, a + 3% — 2xy — by. 18. 3ax2 — 6by + Yay — 2b2?. 
19. 4a®mx + 8anx — 2a®my — 4a?ny. 20. x + 6x®y + 12xy? + 8y°. 

21. 8x3 — 12x2y + 6xy? — y’, 22. 823 — 64y3. 

23ireb* sb 27c°d*: 24. a® — BS. 

25. 1 + my — y? — my’. 26. et +a% +1, 

21. 8 oe 4 1. 28. at + bt — 7ab?. 

29. Aury? — (a? + y? — 22)? 30. 8 — 82? + a — 2, 

In each of Exs. 31-39, find the L.C.M. of the given expressions, and leave the 

result in factored form. 

31. 2a? + 3x — 2, 6a? — Tx + 2. 32. 6x7, 3ay", 12a%y. 

33. a® + ab — 2b, 3a? + 4ab — 4b?. 34. af — 1, 2? + 1, 2x? + 2. 

35. a —x2 —2,07 4+ 47 43,a%7 +2 —-6. 

36. 2x2 — 4xy + 2ax — 4ay, 6xy — 12by — 12y? + 6ba, 3xy + 3ab + 3ay + 

3bex. 

37. wt — 16,27 + 5x + 6,22 +a — 6. 

38. x —y, x — y?, 23 — y8, xt — y?. 

39. 2m? + m — 3m, m= —n — m + mn, 2m? + 2mn + 3m + 3n. 

40. Show that the method of obtaining the L.C.M. of two or more numbers 
in arithmetic is the same as the method employed in algebra for obtaining the 

L.C.M. of two or more polynomials. 

2.11. SIMPLE FRACTIONS 

A fraction is the indicated quotient of two quantities. Thus, if A is the 

dividend and B is the (nonzero) divisor, the quotient A/B is a fraction 

where A is called the numerator and B the denominator. 

Operations involving fractions are performed the same way in algebra 

as in arithmetic. Now, however, we are concerned with algebraic 

expressions instead of simple numbers and must consider negative as well 

as positive quantities. Since fractions are due to the operation of division, 

we will have immediate use for the results of Sec. 2.7. For example, the 

rule of signs for division is directly applicable to fractions. 

A simple algebraic fraction is one in which the numerator and denomi- 

nator are rational integral expressions. Examples of simple fractions are 

2 x— | a a Hn 
—__ , —___—__.,, and ——______.. 
ec+tl1lo2e+e+4 z+ 1 

A simple fraction is said to be proper if the degree of the numerator is 

less than the degree of the denominator and improper if the degree of the 
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numerator is equal to or greater than that of the denominator. Thus, 

xz — | é . wa —24+2 
Bes! and a od are proper fractions while Pol and 

a? — 27+ 2 

a+] 

An improper fraction may be written as the sum of a polynomial and 
a proper fraction. Thus, as shown in illustrative Example 4 of Sec. 2.7, 

are improper fractions. 

he = me a 3a" + 4a Si pag 9a Nt 

a*ta—1 a*+a—41 

The following theorem is fundamental in operating with fractions. 

Theorem 18. The value of a fraction remains unchanged if the numerator 
and denominator are each multiplied (or divided) by the same nonzero 
quantity. 

PROOF. By the definition and property of unity (Sec. 2.7), we have 

By Theorem 15 (Sec. 2.7), Se: 
c 

Since division by a number is equivalent to multiplication by its recip- 
rocal (Theorem 15, Corollary 3), we have, by the first part of the proof, 

From Theorem 18 we have 

Index Law VI. If a4 0 and m and n are positive integers such that 
heen, 

For, by Theorem 18, a”/a” remains unaltered if we divide both numera- 
tor and denominator by a”. Then the numerator becomes a”/a” = 1 
by definition of unity, and the denominator becomes a"/a™ = a"-™ by 
Index Law V (Sec. 2.7). 

We now consider in turn the reduction, addition and subtraction, 
multiplication and division of fractions. 



Sec. 11 Simple Fractions 45 

(1) Reduction. A fraction is said to be in its lowest terms, or simplified, 
when its numerator and denominator have no common factor. Evidently 
a given fraction may be reduced to its lowest terms by dividing both 
numerator and denominator by any common factors in accordance with 
Theorem 18. This process is called the cancellation of common factors. 

2° — 2a : 
- to its lowest terms. Example 1. Reduce Apt oes 

SOLUTION. We first factor both numerator and denominator and then 

divide out (or cancel) any common factors. Thus, 

22° — 2x ___2a(@*—-1) ss a(x +1(@—-1) x1 

4x*— 82? — 1222 42°42 —2e—3) (22)(e+1\(@—3) 2a(e—3) 

(2) Addition and subtraction. If two fractions have a common de- 

nominator, their sum or difference is an immediate consequence of 

ieheorem 17 (Sec. 2.7). That is, 

(1) Sy Pe 

m m m 

This process may be extended to the algebraic sum of three or more 

fractions having a common denominator. 
If two fractions do not have a common denominator, they may be 

transformed into equivalent fractions that do have acommon denominator, 
and may then be combined as above. Thus, if b and dare different, then 

by Theorem 18, 

ad | be € 

et hga tia 
a 
— 
b 

. aa = DC 
By (1), - 

For simplicity, in transforming two or more given fractions into equivalent 

fractions having a,common denominator, we use their least common 

denominator (L.C.D.) which is the least common multiple (L.C.M.) of 

their denominators (Sec. 2.10). We illustrate the process by 

Example 2. Find the indicated algebraic sum of the fractions in the 

expression 
Ze x — 3 2 oy eet a 

@=o1) ge—1 @¢4+1 
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SOLUTION. The L.C.D. is readily found to be (x — 1)?(# + 1), by 

Sec. 2.10. The transformation of each fraction into an equivalent fraction 

whose denominator is the L.C.D. is effected as follows: 

x a: a(x + 1) 1 e+e 

(c—1 («—1)(e@+1) («#—1)%(¢#+4+ 1) 

a—3 (#—3\(¢—1)  w-—4¢+3 

@—1 (2 —1\e@—1) (#—1%«e+1) 

3 - 3(@— 1)? 3a? — 6 + 3 

efi “G+ heety 9 Gare ep 
Then, 

a x — 3 3 at + aw — (a? — 4a + 3) + 3a? — 6x +3 

(eer es ete rete s (a — 1)*(x + 1) 

327 — & 

(x — 1)%(e + 1) 
In actual practice, it will usually be found sufficient to simply write out 
the last statement. 

(3) Multiplication and division. The product of two fractions is given by 
Theorem 15 (Sec. 2.7), which states that 

that is, the product of two fractions is another fraction whose numerator and 

denominator are, respectively, the product of the numerators and the product 
of the denominators of the given fractions. 

The problem of obtaining the quotient of two fractions is reduced to 

that of finding the product of two fractions by using the fact that division 

by a (nonzero) number is equivalent to multiplication by its reciprocal 
(Theorem 15, Corollary 3). It therefore remains to determine the form of 

the reciprocal of a fraction. Let r represent the reciprocal of the fraction 

a/b. Then, since the product of any nonzero number and its reciprocal 
is equal to unity (Sec. 2.7), we have 

To this relation we apply in turn the equality laws for multiplication and 
division. Thus, 

Multiplying by 5, a‘r=b 

Dividing by a, r= 
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That is, the reciprocal of a fraction is another fraction with the numerator 
and denominator interchanged. The reciprocal of a fraction is said to be 
obtained by inverting the given fraction. 

Hence, the quotient of two fractions is equal to the product of the dividend 
and the reciprocal of the divisor, that is, 

Sa TY WI 
b d be _ be 

ae a ies 
Example 3. Divide aa : es ant 

xz — ] x+] 

SOLUTION. As discussed above, we invert the divisor and then proceed 
as in multiplication. Thus, 

fee 6 eA eet le — 6 ae ee | 

Pl a Fl e—1 22-4 

_ (ei w= 6)(e + 1) 

(a? — 1a — 4) 
Since we generally obtain the result in simplest form, we reduce this fraction 

to lowest terms, as in Example | above. Thus, factoring both numerator 

and denominator, we have 

(w+ 3(e—2Qeti) oz +3 
(x + 1(a — Iw + 2)(@— 2) (w— 1)(w + 2) 

2.12. COMPLEX FRACTIONS 

A complex fraction is one that has one or more fractions in either the 
numerator or in the denominator, or in both. Examples of complex frac- 

tions are 
a +2 3 a+2 

Fae x+ 1 Qa? — 34 —2 
——$§_—— and ————. 

ci— ale: 4 

xg? + 24 — 3 22+ 1 

By the simplification of a complex fraction we mean its transformation 

into an equivalent simple fraction reduced to its lowest terms. Two 

methods may be used. One is to transform the numerator and denominator 

into simple fractions (if necessary) and then proceed as in the division of 

fractions (Sec. 2.11). Another method, and often the simpler one, is to 
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obtain a simple fraction by multiplying the original numerator and de- 

nominator by the L.C.D. of all the fractions, in accordance with Theorem 

18 (Sec. 2.11). We will illustrate both methods by examples. 

xz+2 3) 

x? — | = a+] 

Lie 5 

2+ Ix — 3 
SOLUTION. We will use the first method of dividing one simple fraction 

by another. Thus, 

Example 1. Simplify 

x+2 3 x+2 3(a — 1) . 4x —1 

eT eel. oie — 1) Ge De =D 

2x —5 2% — 5 2x —5 

x? + 22 — 3 (x + 3)(a — 1) (x + 3)\(a — 1) 

de 4x —1 (@ + 3(@ — 1) __ Ge — 1% + 3) 

(ee ii) 255 (¢ POs — sy 

xa+2 

2 es = 

Example 2. Simplify = —""—* 

Serra 

SOLUTION. We now illustrate the second method noted above. Since 

2x2 — 3u — 2 = (2x + 1)(x — 2), the L.C.D. is (2a + 1)(x — 2). Hence, 

multiplying numerator and denominator by (2% + 1)(x — 2), we have 

x+2 

2a? — 34 —2 _ cae age » z+ 2 

tent (2m to (ai) 4) a 
2%+ 1 

EXERCISES. GROUP 5 

In each of Exs. 1-6, reduce the given fraction to its lowest terms. 

a’ + ab a v2 +47 +3 

(Qt — b° VE hp SS 

; ae — y2 ac — 2ad + 2bc — 4bd 

"8 4 3" *  @e+4abe + 4b?e ~ 

Hs 22 — x — iy ry m? — mn 
apo. ¢ fis eh SEG) m — mn + mn — r 
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In each of Exs. 7 and 8, express the given improper fraction as the sum of a 
polynomial and a proper fraction. 

x + 4a® — 2x + 1 Sali 
tf : ; : 

a +] xe +1 

In each of Exs. 9 and 10, transform the given expression into an improper 
fraction. 

2 “+7 
DG ahue ah jp 26 = [Oe er ores es : 

x — | Ge as 

In each of Exs. 11-20, find the indicated algebraic sum. 

i 1 1 1 m m 2 

Dare eee ee Nae et els 

2 (oe i] fb ue 3x iG 2 a+ a —2 

Or “Sp a ee ee ete ere ae a 

at+l 2a? — | Ga— 1 
Lares tere ee Ba @+atl a@+a@t+il @—ati 

6 1 1 1 

‘“(a—bla—c) (b-—ca—b) (a—cle —b) 

17 aera ee + : + 
“(a—bia-—c) (b-—cl(b-—a) (ce —afe—5) 

a b (a 
oo 4 + Hi@=DaEe® C=0b=0 'Ga0b—o 

et+y yY +2 z2+2 
0D rr et 

(y¥—z(z—2z) @-aza@-y) @-yy -2) 

b-c c—a a-—b 
20. 

a —(b—c)? ar —(c — a) scc2 —(a — by?’ 

In each of Exs. 21-28, perform the indicated operation and simplify the result 

if possible. 

5a2y 9a*b (a — 2b)? x 
21. 5: 22, ——— -,—_.,. 

3ab? 10xy? ay a* — 4b 

ax i Gh 4a? —9y2 2m + 3y 
23 1Sese Ayla, eae in 
Getta =a a — y o—y 

2 2 5s 6 b 1 1 
sg BE ad UR eg («-=) = (545 

“g24+ 5x +6 ve+a—6 a a Ip 

x — | x«+1 sae lag 

eh: Pansy, hip) Oe ee et Oa 

xz + xy — x2 x xy —y? — yz 

29. Prove that multiplying a fraction by any quantity is equivalent to multi- 

plying its numerator by that quantity. 
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30. Prove that dividing a fraction by any nonzero quantity is equivalent to 

multiplying its denominator by that quantity. 
In each of Exs. 31-34, evaluate the given complex fraction. Fractions of this 

type occur in analytic geometry in the determination of the angle between two 
straight lines. 

A 2 Zi wd 

31 eee 32 a5 
4 2 : ag 

Nats 5 ek 
eed Sel 

2 8 3 
33 5 3" 34. a 

1+5°5 aces 

In each of Exs. 35-45, simplify the given complex fraction. 

a 1S el 
nape Ss A 

S50 36. = . 

ae Bo @ 
xv x. nt — nt 

oe {eS 
y ii a m + mn 

Ay CY Hd) 1 

eh Sop 5 9) 

a — x — 6 1 
Lena rene ye ee 

errs ane 

1 1 
GA Semone 42. ; 

a cee ee 1+2 
1-—- 1 

ress 
a + ye 

eon a + y8 
= ieee ener pe 1 chassis 

wy 
1 

a te a ak i 
" (@ + 1)? — a 2 

1 £ 

2 1 : ay 4s. (= - ‘. —) +(-5 “} 
CO ae a-—-«%® a+z2a}- 
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2.13. EXPONENTS 

We have already discussed six index laws or laws of exponents (Secs. 
2.5, 2.7, 2.11), which are listed here for convenient reference. 

lik a™: a®*= Ghee 

Las) hae=.a'se. 

Ill. (ab)"™ = a™b”. 

IV. (<)’ an 
b lpee 

a 

V. i a he 
a 
qa™ i 

VI. ae = n—-m? man, a a 

It should be particularly noted that these laws have been established 
only for exponents that are positive integers. On the basis that the laws 
hold also for exponents that are other than positive integers, we will now 
determine the significance of fractional, zero, and negative exponents. 

Let q be a positive integer so that 1/g is a positive fraction. We now 
consider the meaning of 1/q as an exponent, that is, the meaning of a1/4 

where a #0. In order that Index Law I may hold for such a fractional 
exponent, we must have 

...- togterms qi/a é qui4 : qua. Ane tog factors = quatlattjat oqterm 

_ 0 
That is, a!/? has the property that its gth power is equal toa. We then 
define a‘/" as a gth root of a and write 

Quid = as 

where the symbol 1/ is called the radical sign and the integer q is called the 

index of the root (see Sec. 1.3). For g = 2, it is customary to omit the 
index of what we usually call the square root. 

= a. 

NOTE. We shall see later that any number (except zero) has q¢ distinct qth 

roots, and this is the reason for referring to a’/“ as “‘a’”’ qth root of a. Thus, the 

number 4 has two square roots, +2 and —2. In order to avoid this ambigutiy, 

we shall assign to a!/? a unique value called the principal root and defined as 
follows: 

q even. If ais positive, there are two real roots, numerically equal but opposite 

in sign. The positive root is then taken as the principal root. Thus, the principal 

square root of 4 is +2, denoted by 4% and the principal fourth root of 81 is 

+3, denoted by 81%. 
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If a is negative, there are no real roots, and this situation will be considered 

later (Chapter 8). 

q odd. If a is positive, there is one real positive root, and this is taken as the 

principal root. If a is negative, there is one real negative root, and this is taken 
as the principal root. Thus, the principal cube root of 8 is +2, denoted by 88; 
the principal cube root of —8 is —2, denoted by (—8)”. 

More generally, if p and q are positive integers, then for Index Law II 

to hold, we must have 

(a?!%)4 = g(Piad) — a’, 

whence we have the definition - 
iy ee 

gut = V a, 

that is, by a?/* we mean the qth root of the pth power of a. As before, we 
restrict this gth root to the principal root. Thus, 

GPS S14) 82s A) 64a, 

We note, furthermore, that by Index Law II, we may also have 

ait aaa 

that is, we may also interpret a”/’ to mean the pth power of the qth root of a. 
In other words, if we use only the principal root, a number affected by a 
fractional exponent may be evaluated by taking the power and the root 

in either order. 
Thus, for our previous example, we may also have 

875 = (0/8)? = (2)2 = 4. 

Hence, for a fractional exponent, the numerator signifies a power and the 
denominator a root. 

In order that Index Law I may hold for a zero exponent, we must have, 
for m=" (, 

@ 5 qa” a qotn = renee 

whence, by the definitions of division and unity (Sec. 2.7), 

a———) ai == (0), 

That is, any number, other than zero, having the exponent zero, is equal to 
one. The symbol 0° is undefined. 
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We next consider the meaning of a negative exponent. Let m be a 
positive integer so that —m is a negative integer. Then, assuming Index 
Law I to hold, we have 

whence i Mae), 

and a” = — ., asa 

That is, the meaning of a negative exponent is given by the relation 

a 4 0 
a =a Ga) 

Hence, in a fraction, any factor may be transferred from the numerator 

to the denominator, and vice versa, provided that the sign of its exponent 
is changed. 

2 =2 2 a°b 3 a“bx 
—— = == , and so forth. 

x 1? a “b 1 y? 
Thus, 

We have now given meanings to fractional, zero, and negative ex- 

ponents, that is, to all rational exponents. It may be shown that these 

meanings are consistent with all six index laws. Later we will consider 

irrational exponents (Chapter 16). 
The operations of algebra may now be performed for all rational 

exponents in exactly the same manner as for exponents which are positive 

integers. These will be illustrated by several examples. 
Many problems involving exponents are problems in simplification. In 

general, we will consider a given expression to be simplified when it is 

expressed in its most compact form, a fraction being reduced to its lowest 
terms, and any fractional exponents being reduced to their lowest terms 

(occ. 2.11), 

Example 1. Evaluate (a) (—27)”; (b) (32); (c) 64%: 87%. 

SOLUTION. (a) (—27)% = [(—27)“P = (—3)? = 9. 

(b) (32)* = (32%)? = (2)? = 4. 

(c) 64” - 
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Lgerviat 
Example 2. Simplify Con ; ra : 

1 oe | 1 1 ie 
6) ——————— SOLUTION. (Ba : aA (2a%)4 at 

1 —1 | 1 i 

= \|—. —— =2 . 

Ee a| 2a “ 

Example 3. Multiply xy“ — x4 + y by «4 + y44+ x “%y, 

SOLUTION. We proceed here as with integral exponents. (See Example 3 

of Sec. 2.5.) The operation then appears as follows: 7 

Degen 
1 | 235 \ 

oe y* + & ay 
ety a+ «4/4 

xy 

a—a*%y? ty 

Bio ata: ate 

Be eet ests oe 

Example 4. Express as a complex fraction and simplify 

Gap aa “bee 
oe ee 

1 1 
oo + —— 

Gb * ab db? a 
SOLUTION. a hate bape = ean ie 

PB a 

Multiplying numeratorand = a+b _ 1 
denominator by a*b?, eee Fla ee bn 

EXERCISES. GROUP 6 

1. Show that the meaning attached to the zero exponent in Sec. 2.13 is 

consistent with Index Laws II-VI. 

2. Show that the meaning attached to a negative exponent in Sec. 2.13 is 

consistent with Index Laws II-VI. 

In each of Exs. 3-10, evaluate the given expression. 

3. 1674, 4, (—8)%, BoD Sere 6. 4% - 2-3, 

(0.008) 18-% 8-4 - 16-4 
9 10 
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In each of Exs. 11-18, simplify the given expression and write the result with 
positive exponents. 

11. (2a* + 8a-)-%, 12. [—8(a*y—*)4]% 13. [mr (m{m}"4)472, 
27a b?2 —l4 mas 3 lg 714\—2 al a! 

(3a”*)~%b 9nb b-” ag ly-l 

4074 8a 4 (16x?y8)-4 (34xty4)-4 
SeP jak s ar 8 Gat Oaiyro 

In each of Exs. 19-27, find the indicated product. 

19. (w® + y'4)(a~4 — y’), 20. (x + y)?, 
21. (a4 + 2-4), 22. (@ + a)\(@ — a), 

23. (24 — y%)8. 24. (2% + y)8. 
25. (a% + a%b’s + b%)(a%4s — b%). 26. (a2 —1 +a (a2 +14 a-%). 

27. (m% — m? + m*® — m + m4 — m)(m'* + m). 

In each of Exs. 28-32, perform the indicated division and check the result. 

28. (w@ —y) + (#% — y”). 29. (@ +y) + (@4 + y”). 

30. (w3r/? — y-3ni2) = (~rl? — a2), 31. (a — x) + (aX% — &), 

32. @% — a% — 8x + 92% — Jx% + 60-%) + (a@% 4 22% — 3), 

In each of Exs. 33-40, simplify the given expression. 

oy My 2% x 22 3 aeyble —1 a b+e7e 

33: Sy asi = 4] 5 Ba lea => -_ Cc ‘ 

ay (xy) eae y 
¥y 

v c c 

Ge = 2(ay) aE y [Cam )L/r(q%)Unjnr (qtr 

eee i See © (Fy 
—2 

(:) + Liye = 2x9 

xz 

8 — 2x2 + 2(4 — 2?) 

x D 

~@— a4 ( ar 

a+b\ 1 Cady b+e ee 

38. Cadac (,5=2)3 Bs be i)e a. 

got ae 1 1 aye ab i 24-1 . 

38), 4 aoe — + (a3 + y 9), 

Sie 

1 

ei—yt y*—@ 

(Gate NG Ue) fa elas Ops toa Ce aD) 

ay + (wy): ay? — (wy) * 

2.14. RADICALS 

The expression “/a, denoting the principal qth root of a, is called a 

radical, and the quantity a under the radical sign is called the radicand. 

The index of the root, q, is also called the order of the radical. 
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In Sec. 2.13 we made the definition 

alt = ‘Ja, 

so that radicals may be replaced by expressions with exponents. Hence, 
operations with radicals may be performed in accordance with the index 
laws (Sec. 2.13), it being understood that each root involved is the principal 
root. From these index laws we may obtain the following /aws of radicals: 

I wa: w/b = ab. 

II. 2 on /2 b#0. 
Wb b 

WL. Wva = "Va = Va: 

We use these laws to simplify radicals and to perform the various 
algebraic operations on them. It should be noted that when m and n are 
even, the radicands a and 5 in these laws are non-negative numbers. 

(1) Simplification. The single radical V ais said to be in simplest form 
when it satisfies the following conditions: 

(a) The radicand contains no factor to a power as high as the order q 

of the radical. 

(b) The radicand contains no fractions. 

(c) The index of the radical is as small as possible. 

We illustrate the simplification of single radicals in the following 
example. 

‘ : Cy Paar 27 One 
Example 1. Simplify: (a) /8a°; (b) 33 (©) V27. 

SOLUTION. (a) ¥/8a° = ¥/23a3 - a? 

By Law I, = 4/7343: 3/42 

2a a2. 

(b) By Law II, EL IEE 
2 v2 ff 

By Law I, =—_. 

The next step is the removal of the radical from the denominator, a 
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process known as rationalizing the denominator. lt is accomplished by 
multiplying both numerator and denominator by V2. Thus, 

3/3 _ ;.v3. NP) 
sf2 a2 V2 

By Law I, = ain O, 

This result may have been obtained more directly as follows: 

ee = 27/2 _ 54 meat oo 6 
PE GA pe elena: 

On account of its great importance, this process will be considered in 
greater detail under Item (4). 

(c) V27 = 33 = 3% = 3% = V3. 

(2) Addition and subtraction. Two radicals are said to be similar if, 

when reduced to their simplest forms, they have the same radicand and 

the same index. 

Thus, 37 and —2W7 are similar radicals. 

The algebraic sum of similar radicals, regarded as similar terms, is 
obtained by multiplying the sum of their coefficients by their common 

radical factor. 

Example 2. Find the indicated sum: 

4V2 — 2V'18 + 3V32 — V'50. 
SOLUTION. If possible, we first simplify any terms. Thus, 

4V2 — 2V18 + 332 — V50 = 4V2 —2V9-243V 16-2 —V 25-2 

= 4V2—6V2 + 12V2 — 5V2 = 5V2. 

(3) Multiplication and division. To multiply two radicals, we first 

transform them, if necessary, to the same order and then apply Law I. 

The procedure is illustrated in 

Example 3. Multiply V 2 by /3. 

SOLUTION. The indices 3 and 2 have 6 as their L.C.M. We therefore 

transform each radical to the order 6. Thus, 

V2 = Ae i 
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Hence, A235 = Af4> 5/27 

By Law I, = V4-27 = 108. 

The multiplication of expressions containing two or more terms, some 
or all of which are radicals, is performed as for ordinary algebraic 

expressions (Sec. 2.5). In this process, the multiplication of individual 

radicals is carried out as above. 

Example 4. Multiply 3Vz + 2Vy by 2V.x — 3V y. 
SOLUTION. We arrange the expressions and proceed as in ordinary 

multiplication. The work then appears as follows: - 

3,/% + 2/y 

2/z — 39 
6x + 4./xy 

— 9x) cy —6Y 
6x — 5,/xy — by. 

To divide one radical by another we first transform them, if necessary, 

to the same order, and then apply Law IL. 

Example 5. Perform the indicated divisions: 

3: 
(c) sis cu (b) ~ 

Yor a 3 

/10 
SOLUTION. (a) By Law II, weet 10m = V5. 

MD 2 

: ’ 7 
(b) In this case, if we apply Law II directly, we obtain af which is not 

(a) 

in its simplest form. Hence, we proceed as in Example 1(b) and rationalize 
the denominator. Thus, 

Rp Bios So ah 

(c) Transforming both radicals to the same order 6, we have 

SEPENEEST 
Vat Outil 

If the dividend consists of several terms and the divisor is a single 
radical, the operation of division is performed by dividing each term of the 
dividend by the divisor, as illustrated in the preceding example. However, 
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if the divisor consists of two or more terms of which at least one is a radi- 
cal, it is generally desirable to rationalize the divisor. This operation is 
discussed next. 

(4) Rationalization of the denominator. If we desire to evaluate 1/V 2 
as it stands, using a value of 1.414 for V2, we must divide unity by 1.414. 
However, if we first rationalize the denominator, as in Examples 1(b) and 
5(b), the evaluation is much simpler. Thus, 

4= = HY 0707 
4 

In general, by the rationalization of the denominator of a given fraction, 
we mean the transformation of that fraction into an equivalent expression 
whose denominator is rational. We now extend this process to the case 
where the denominator of a fraction is a radical expression consisting of 
two or more terms. 

One radical expression is said to be a rationalizing factor for another 

radical expression if their product is rational. Thus, Va — Vb and 

Va+Vb are rationalizing factors for each other, for 

(Va — Vb\(Va + Vb) =a— b. 
We illustrate the use of a rationalizing factor in the following example. 

Example 6. Divide V 22 by 2V3 + V1. 

SOLUTION. In view of our previous discussion, we consider the equivalent 

problem of rationalizing the denominator of the fraction 

JB 
23 il 

A rationalizing factor for the denominator is obviously Pe SE, 

Hence, we have 

4/22 5 eens 
273 ii 2.3 4,/11 23 — ii 

2,/66 — 11,/2 - = 
= +. = 2,/66 — 11/2. 

yt v v 

Sometimes the rationalization process may require more than one step. 

This is illustrated in 

i) 
Example 7. Rationalize the denominator of AW Owe ? 

SOLUTION. Since a complete rationalizing factor is not obvious, we 

multiply numerator and denominator by | + V/2 + V3 as a first step. 
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Thus, 

1 2 1 (1442473 14524 V3 

tro = 8) Ce) a ees 
14+ /J24+ V3 J2_ y2+2+ 6 
setae a8 “var 4 

EXERCISES. GROUP 7 

1. By means of the index laws of Sec. 2.13, establish the laws of radicals 

given in Sec. 2.14. 

2. If mand n are positive integers, show that Be 

Va™ = (Va)™. 
3. If m,n, and p are positive integers, show that 

Va" = Van, 
In each of Exs. 4-11, reduce the given radical to its simplest form. 

4. V8a3. ee yD 6. 0 32mn', 7. V45a°x3, 

5 Ba a 9 
8. fe flag Sag 10. 25m. 11. V8a3, 

In each of Exs. 12-15, find the indicated sum. 

(50 = VAs 952 105, 

1304S 200 Pew oe 50. 

= Tamed UAE ie sentae 
14. V28 +21 /=- -—— + V49. 

T V4 

15. 748 +204 —3V6 — V2 +236, 
In each of Exs. 16-31, perform the indicated operation. 

16. (2V15)(V27). 17. 3V6)(V8). 

18. (73)(V2). 19.-(V/15) = (3). 

20. (V15) + (V6). a1. (4) = (2): 

GV 2238 V5) 3, 93.1 GV 2 2V 3 V5) 

24) (VAY 3 a) 25. (Vidi? V5. 9) ev 

26. (2Vx —3 Vy), OT GV ea ye 

28.V74+V3-V7—V13. 29, (V3 — V2)8. 

30. V7 44/03 7 31..(V2 + V3 + V5) 2 V3 5), 

32. Find the value of «2 + 2x — 2 when x = —1 — V3. 

wo Fact 44/03 
33. Find the value of 2x? + 3% — 3 whenw = 
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In each of Exs. 34-43, rationalize the denominator. 

3 2V3 —rv/6 34. ——.. 35. whe akg 36. ne VSS V3 2 4/9 5 oy. 
V3 4 V2 I 

Bis or eee 38. iP el Laer 39. FS M32 Dea VR aIArS V2 PP V'3 CLV | 

A etait Tats ah Pi ana ea a 
pe ee 1 ate 1 nt 
VD es ars [Naa ON & es oe pata LRA 
VO a Bet VS, V Dea Set T 

8 — 2a? + 2V4 — 22 
44. Simpli Simplify 3 5 

V4 — x2 zi xv 
1 ee 

4 
ee eee He 

hc Sh a i a LI ee 
Via bye a—b Via—bye'=1) 
Cele eet 2 1 iis 

2.15. A NECESSARY AND SUFFICIENT CONDITION 

Now we shall consider the meaning of the expression “‘a necessary and 
sufficient condition,’ which occurs frequently in mathematics. We will 
first illustrate its meaning by an example. The student is already familiar 
with the following simple theorem from elementary geometry: 

If a triangle is isosceles, the angles opposite the equal sides are equal. 
This theorem states that if a triangle is isosceles, it necessarily follows 

that the angles opposite the equal sides are equal. Hence we say that the 

existence of two equal angles is a necessary condition that the triangle be 

isosceles. 
But the converse of this theorem is also true, namely, 
If two angles of a triangle are equal, the sides opposite these angles are 

equal, that is, the triangle is isosceles. 

This theorem states that the existence of two equal angles is sufficient to 

make the triangle isosceles. Hence we say that the existence of two equal 

angles is a sufficient condition that the triangle be isosceles. We may then 

combine both the theorem and its converse in the following single state- 

ment: A necessary and sufficient condition that a triangle be isosceles is 

that two of its angles are equal. 

An alternative phrase often used in place of a necessary and sufficient 
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condition is “‘if and only if.’ Thus, the preceding statement may be 
written: A triangle is isosceles if and only if two of its angles are equal. 

More generally, if the hypothesis A of a theorem implies the truth of a 
conclusion B, then B is a necessary condition for A. Furthermore, if, 

conversely, B implies the truth of A, then B is a sufficient condition for A. 
In Sec. 2.5, we established Theorem 8 and its converse, Theorem 11, 

which are restated here for convenience: 

Theorem 8. The product of any number and zero is equal to zero. 
Theorem 11. Jf the product of two numbers is equal to zero, at least one 

of these numbers is equal to zero. 

Now, in view of our previous discussion, we may combine these two 
theorems in the following single statement: A necessary and sufficient 

condition that the product of two numbers be equal to zero is that at least 
one of these numbers is equal to zero. 
A generalization of Theorem 11 was stated in a corollary to the theorem. 

Hence, in view of the great importance of this theorem in the solution of 
equations, we restate the previous theorem in the following form: 

Theorem 19. The product of two or more factors is equal to zero if and 
only if at least one of these factors is equal to zero. 

Later we shall often have occasion to refer to this theorem. 
We next consider the concept of a necessary and sufficient condition in 

connection with the meaning of the term definition. By the definition of an 
object is meant a description of that object of such a nature that it is 
possible to identify it definitely among all other objects of its class. The 
implication of this statement should be carefully noted: it expresses a 

necessary and sufficient condition for the existence of the object defined. 
Thus, consider that we are defining an algebraic expression of type A by 

means of a unique property P which A possesses. Then, in the entire class 

of all algebraic expressions, an expression is of type A if and only if it 
possesses property P. 

As a specific example, let us consider the term rational number, which 

was defined in Sec. 1.3 as the number having the unique property P that it 

can be expressed in the form p/g where p is any positive or negative integer 

or zero, and q is any positive or negative integer. This means that every 
rational number has property P; and conversely, any number having 

property P is a rational number. To emphasize this characteristic, we may 
reword our definition thus: A number is rational if and only if it can be 

expressed in the form p/q where p is any positive or negative integer or 
zero, and q is any positive or negative integer. 

As we proceed in our study of algebra we will often have occasion to 
derive various necessary and sufficient conditions. 
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2.16. SUMMARY 

In this chapter we studied all six algebraic operations applied to real 
numbers and to various algebraic expressions representing real numbers. 
We have not, however, considered complex numbers, since, as previously 
indicated, we shall make a special study of such numbers in a later chapter. 

Further work in algebra is concerned with various topics and applica- 
tions in which algebraic operations are used. The student should not 
hesitate, therefore, to refer back to this chapter whenever he feels the need 
for refreshing his memory on the proper procedure in algebraic operations. 
We conclude this chapter with a group of miscellaneous exercises which, 

in general, are somewhat more difficult than those in the previous groups. 
The student will find some of these exercises intriguing and challenging. 

EXERCISES. GROUP 8 

1. Ifa > band b > c, show thata >c. 

2. If a and b are two different numbers, show that there is a number 

b 
co us , which lies between them. That is, if a > b, show thata >a > b. 

3. In Ex. 2, if a < b, show that a <a <b. 

aoc h h a+b ctH+d 
4.185 => show that aA 7 

as ag a a= (2p) + a3 

eee ei show that ———— =F, 
ois Sees ie by + by +b, 
6. Find the fallacy in the following demonstration: 

Lei or = fy 

Multiplying by a, OC = ap: 

Subtracting 5”, a* — hb? = ab — b’. 

Factoring, (a + b\(a — b) = b(a — B). 

Dividing by a — 8, a+b=b. 

Since a = b, b+b=6, 

or Mn = bb, 

whence Pa—aIr 

7. In the ordinary arithmetic multiplication of 47 by 32, show how the 

distributive law is used. 

S/If s=a+b +c, show that s(s — 2a)(s — 2b) + s(s. — 2b)(s — 2c) + 

s(s — 2c)(s — 2a) = (s — 2a(s — 2b)(s — 2c) + 8abe. 
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9. The algebraic operations of addition, subtraction, multiplication, division, 

and involution are called the rational operations. Justify the use of this term by 

showing that if one or more of these operations are performed on rational 

numbers, the results are also rational numbers. 

102 Factor 2a* — b° + ab’ "3a + 3b) = 2. 

11. Factor 3a? — Sey — 2y? + 7x + Ty — 6. 

12. Factor a* + 4. 

13. If ais a positive integer greater than 1, show that a® — a is exactly divisible 
by 6. 

14. Find the L.C.M. of x2 + # — 2,23 — 13x + 12, anda? + 3x? — 10x —24. 

15. The highest common factor (H.C.F.) of two or more polynomials is the 

polynomial of highest degree which is an exact divisor of each of them. Find the 
H.C.F. and L.C.M. of ax? — ay? and ax? + avy — 2ay?. 

16. Let H represent the H.C.F. and L the L.C.M. of any two polynomials P 
and Q. Prove that H x L = P x Q. Verify this theorem for Ex. 15. 

In Exs. 17-19, p, g, r and s are positive integers. 

17. Show that (a?/%)(a"!s) = qv/atrls, 

18. Show that (a?/)"/§ = gpa, 

qhl4 
19. Show that [> = qbhli—tls. 

a 
20. If we do not restrict the root of a number to its principal root, show, by 

means of an example, that the pth power of a qth root of a number is not always 

equal to a qth root of its pth power. 

21. Without using a table of roots, determine which is the greater: 

(a) VSor V112. = (b) W714 or V6? 

22. If the correct value of V2 to 7 decimal places is 1.4142136, find the value of 

1/(V2 — 1) correct to 7 decimal places. 

23. If the correct value of V3 to 7 decimal places is 1.7320508, find the value of 

1/2 - V 3) correct to 7 decimal places. 

24. Show that V2 is irrational by the following procedure. Assume, contrary 

to the desired result, that V2 is rational so that we may write the equation 

V2 = a/b, where a and b are integers and have no integral factor in common. 

Then show that this equation leads to a contradiction. 

25. Show that V3 is irrational. 

ee 1 
26. Rationalize the denominator of —-————————. , and hence determine the 

1-vV24+ V3 
rationalizing factor which would have given the result in one step. 

27. Rationalize the denominator of ak 
ava 
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28. Rationalize the denominator of 5 
Ve-+- Vy 

1 
29. Rationalize the denominator of ————. 

eS es 49) 

30. Find a rationalizing factor for Vx — Vy. 

31. Find the positive square root of 29 + 12V 5 as a radical expression in 
simplest form. 

32. Find the positive square root of 5 + 2V6 as a radical expression in 
simplest form. 

33. If a and b are positive numbers, explain the fallacy in the statement that 

V —a- V —b = Vab. Give the correct statement. 

34. Show, by means of examples, that a condition may be necessary without 

being sufficient, and vice versa. 

35. Show, by means of examples, that there may be more than one necessary 

and sufficient condition for the truth of a theorem. 
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‘The function concept 

3.1. INTRODUCTION 

This chapter will consider the meaning of the term function, a concept of 
fundamental importance in mathematics. Our treatment of function at 
this time is basic and general, but the student will observe the development 

of this concept as we proceed further here and in succeeding chapters. 

3.2, CONSTANTS AND VARIABLES 

In a given expression or relation, or in the course of a particular dis- 
cussion, there may exist two types of quantities for which we have the 
following 

Definitions. A symbol which represents a fixed value is called a constant; 

a symbol which may represent different values is called a variable. The set 

of values which a variable may assume is called the range of the variable. 

For example, consider the formula C = 27r, which gives the circumfer- 

ence C of a circle of radius r. In this relation, C and r may assume various 

(related) values and hence are variables, but the quantities 2 and 7 are both 
fixed and are therefore constants. 

There are two types of constants, absolute and arbitrary. An absolute 

constant is one which has the same value in every problem or situation. 
Thus 2 and z are absolute constants. An arbitrary constant or parameter 

is one which retains the same value throughout a particular problem or 
situation, but this value may be different in another problem or situation. 

For example, consider the expression ax + b, where x may take on differ- 

ent values but a and 6 are considered constants. This is a general expres- 

sion or formula for polynomials of the first degree, such as 2x + 5 where 

66 
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a = 2and b = 5, and x — 4 wherea = 1 andb = —4. In this case, a and 
6 are arbitrary constants or parameters. 

3.3. DEFINITION OF FUNCTION 

We first define a function of a single variable as follows: 

If two variables x and y are so related that for each permissible value 
assigned to x within its range there corresponds one or more values of y, 
then y is said to be a function of x. 

For example, the relation y = 2x 4+ 5 exhibits y as a function of 2 since, 
for each value assigned to x, a corresponding value of y is determined. For 
this particular function the student may easily verify several pairs of 
corresponding values as given in the following table: 

x/0 12 —1 -—2 -3 

LES ESE 1 Ee GL oe | 

We note that we may assign values to x at pleasure, but the resulting values 

of y depend upon the values assigned to 2 in a particular function. For this 
reason, we Call x the independent variable and y the dependent variable. 

The student will observe that the function concept is concerned with 
the dependence of one quantity upon another. Such a relation occurs in a 
wide variety of cases. Thus, in the formula previously cited, C = 2mr, 

the circumference C of a circle is a function of its radius r, that is, the 

circumference of a circle depends upon its radius. 
In our definition of function we referred to each permissible value 

assigned to x. The reason for using the word permissible is that in a 

given functional relation the independent variable may not necessarily 

assume all values. For example, in the function x/(~ — 1), x may assume 

all values except 1, for division by zero is an excluded operation (Sec. 2.7). 

Also, in the relation y = V/ x, if we restrict y to real values, we cannot 

assign negative values to x. 

A function of x is said to be defined for a particular value of x provided 

it has a definite value for that value of x. Thus, as indicated above, the 

function x/(~ — 1) is not defined for x = 1. Also, for real values, the 

function Vx is defined only for non-negative values of «x. 

3.4. TYPES OF FUNCTIONS 

If a function has one and only one value for each value assigned to the 

independent variable, it is called a single-valued function; if it has more 
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than one, it is called a multiple-valued function. Thus in the relation 
y = 2x + 5, y is a single-valued function of x because, for each value 

assigned to x, one and only one value of y is determined. But in the 

relation y = +Vx+ 1, y is a double-valued function of x since, for each 

value assigned to x, two corresponding values of y are determined. 
If the variable y is expressed directly in terms of the variable x, it is 

said to be an explicit function of x. Thus in the relation y = 2x + 5, y is 

an explicit function of x. If, however, the variables x and y appear in a 
relation where neither variable is expressed directly in terms of the other, 
then either variable is said to be an implicit function of the other. Thus in 
the relation « + y = 5, y is an implicit function of x and 2 is an implicit 

function of y. 

Consider now that # and y are.connected by a relation such that y is an 
explicit function of x. If this relation is transformed so that x is expressed 
as an explicit function of y, then this latter function of y is called the 
inverse function of the original function of x. Thus, the function y = 5 — x 

is readily transformed into its inverse function x = 5 — y. 
Another distinction between various types of functions is the number 

of independent variables involved. In Sec. 3.3 the definition of function 

was restricted to a single independent variable. We may, however, have 
functions of two or more variables. For example, in the relationz = 2? — y?, 
the dependent variable z is a function of the two independent variables, x 
and y. Here we may assign values to x and y independently of each other. 

Functions of this type are called functions of several variables. As for 
functions of a single variable, we may have single-valued, multiple-valued, 

explicit, implicit, and inverse functions of several variables. 

3.5. FUNCTIONAL NOTATION 

Heretofore we have, for convenience, let the letter y represent a function 
of x; thus, y = 2x + 5. We may, however, also use the symbol f(x) in 

place of y and write 

(1) y = f(x) = 2x + 5, 

where f(x) is read “ the f function of x’ or simply, “f of x. But this 
symbol has another very important use. If we wish to express the value 

of this function when the independent variable # has a particular value, 

say a, we merely replace « by a wherever it occurs in the function. Hence, 
for the function given by relation (1), we have 

f(@ =2a +5. 
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Similarly, for the same function we have 

fO) = 20) +5=5, 
S(—) = 2(—1) + 5 = 3, and so on. 

In a particular problem, f(x) represents a definite function. But if more 
than one function occurs in the same discussion, we use different letters 
to distinguish them, such as F(z), g(x), and ¢(x). For example, to dis- 
tinguish another function of 2 from (1), we could write 

F(a) =2+a2—1. 

We may also extend this same symbolism or functional notation to 
functions of several variables. Thus, if 2 = x? — xy + 2y?, we may write 

z= f(x, y) = x — xy + 2y*, 
whence f(a, 6) = a® — ab + 26, 

LY, %) = 9 — ye + 22°, 
f(, 3) = 2? — (2)3) + 2(3)? = 16, and so on. 

Furthermore, in accordance with this functional notation, if y is an 

explicit function of x, we may write y = f(x) from which we may obtain 
its inverse function and write it symbolically in the form x = g(y). Also, 

if x and y are implicit functions of each other, as in the relation + y — 

5 = 0, we may indicate this by the notation F(z, y) = 0. 

x+1 a f@) + FQ) 
d F(x) = ——., find ———______ 

a CaP ES AME ee) 
SOLUTION. In accordance with the significance of functional notation, 

we have. 

Example 1. If f(x) = 

2+ 1 1 
—_ + —— 

f(2) + FC) a 2-1 1+1 3+4 641 

ier) We ele el ele 
2—1%i1+4+41 

y 1 
_ a) = == =, tine! ‘ Example 2. If f(y) es] and g(y) pei nd f[g(y)] 

SOLUTION. The expression f [g(y)] is often called a function of a function. 

It means that each y in the expression for f(y) is to be replaced by the 

expression for g(y). Thus, 

1 

age acl ees ap ee tal 
at I-Ie y= 2 

y+? 



70 The Function Concept Ch. 3 

EXERCISES. GROUP 9 

1. The volume V of a right circular cone of base radius r and altitude h is 

given by the formula V = 4nr*h. Express (a) the altitude A as an explicit function 

of V and r and (b) the radius r as an explicit function of V and h. 

2. The period of vibration T of a pendulum of length L is given by the 

L 
formula T = 27 ei . , where g is the constant acceleration of gravity. Express L 

as a function of T. 

3. Express the length d of the diagonal of a square as a function of its area A. 

4. For a circle of radius r, the circumference C is given by the formula 

C = 2nr and the area A by the formula A = ar?. Express the area as a function 
of the circumference. 

5. If f@) =< —2 +1, find (0), (-2.(5). 

6. If f(x) = 24 — 5a? + 4, find f(), f(—D, f2), f(—2). 

7. If f@) =# + =, show that f(‘) = r(:) and that f(—1) = —f(0). 

8. If gv) = x& + wt — x? + 2, show that g(—x) = p(x). 

9. If $y) = Vy? + 9, find (V7), 4(4), (0). 
ea ay av 5 

10. If Fe) <a? — 30 41, find F( = ) ana r( 5) ;) 

x +1 wes 
11. If f(@) = ae find f(V 2) in simplest form. 

fe) Sp f@% +e) die) te ——___———— aD ee aren + f(y) gy) 
¥y 

12. If fy) = i= 
result in simplest form. 

13. If F(@, y) = 2x? + 3ay — 2y?, find F(1, 2), F(—1, —2), F(2, 3), F(—2, —3). 

14. If F(a, y) = @ + ay + vy? + y3, show that F(y, x) = F(x, y) and that 

F(—2, —y) = —F(@, y). 

and express the 

1 SiO = = 
15. If Giz, y) = ea, find G(V3, V2) in simplest form. 

(« +h) — f(x) 
16. If f(z) =2* + 5x — 2, find a This operation is per- 

formed in the calculus in the course of obtaining the derivative of f(x). 

: 1 fe +h) —f@ 
17. If f(«) = —— — f(@) ea? find jh : 

18. If F(x, y) = 2? — Sx*y + 3xy? — 3y3, show that F(ka, ky) = k°F(a, y). 

19. Generalize Ex. 18 by showing that if F(x, y) = a x” + ayx"—ly + 
age" y? +--+ +a, ,cy" + a,y", where the a’s are constants, then 
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F(kx, ky) = k"F(x,y). This is a test for the homogeneity of a function and 
shows that F(x, y) is a homogeneous polynomial of degree n (Sec. 2.2). 

20. If F(x, y) = 40? + 9y?, show that F(a, y) = F(—a,y) = F(x, —y) = 
F(—x, —y). These results are illustrations of tests used in analytic geometry to 
determine various types of symmetry of curves. 

22 — | 
PAV If y = f(x) — ree 5 show that x = f(y). 

Sy + 4 
22. If x = g(y) = ess , show that y = g(a). 

3 2, Bafa 
a —— 

3° show that f[ /f(x)] = 2. 

2 
aq show that gle(y)] = y. 

2e« + 1 
25. Ify = f(x) = aa 

4y — 

find f(y) in terms of x. 

3.6. CLASSIFICATION OF FUNCTIONS 

In Sec. 3.4 we discussed various types of functions. We will now 
consider the division of functions into various classes according to their 
forms. We first lay down the following 

Definition. A function of the variable x is said to be algebraic if it 
involves x in only a finite number of one or more of the six operations of 

algebra. 
Thus, examples of algebraic functions of x are 

ee and eee eS. 
ie Op) 

NOTE 1. The student should compare this definition with the fundamental 

definition given in Sec. 1.6. 

This definition of algebraic function is sufficient for all the purposes of this 

book and for almost all other situations the student may encounter in his later 

work. However, it should be pointed out that this definition does not include 

all algebraic functions, as explained in Note 2 on page 72. 

A rational integral function of x isa function of the form 

Ayu” + ax") + agn™ + +++ + Ay 4% + An, 

where 7 is a positive integer or zero and dp, 4,°**, 4, are any constants. 

We ordinarily speak of such a function as a polynomial in x. In particular, 
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if dy ~ 0, the function or polynomial is said to be of degree n. (See Sec. 

Pg a) 
A rational function of x is the quotient of one rational integral function of 

a by another which is different from zero. Thus, if f(x) and g(x) are both 

rational integral functions of x, if g(x) ~ 0, and if 

cg (1) R(x) = 2, 
8(2) 

then R(x) is a rational function of z. 

An algebraic expression which cannot be put in the form (1) above is 

—— x— VD + 23 
said to be an irrational function. Thus, Vx + 1 and ———~—— are 
irrational functions. seed 

The three preceding definitions may be readily extended to functions of 
several variables. Thus, 2x2 + 3xy — 4y? is a rational integral function of 

Qu? + 3ay — 4y? 

a + 3x%y — 2y3 

is an irrational function of x and y. 

Now consider that # and y are connected by the implicit relation 

Qy> y@ =F Ri@)y** + Ray Rey KR, (z) = 0; 

where m is a positive integer and R,(x), R,(x),---, R,,(x) are rational 

functions of x. If the relation between the two variables x and y is of the 

form (2), or may be made to assume such a form, then y is said to be an 

oe 

re SO)! 

x and y, is a rational function of x and y, and Va + y 

algebraic function of x. Thus each of the relations x? + y? = 1, y? = 

and x’ + y” = | expresses y as an algebraic function of x. 

NOTE 2. Advanced treatises show that if m > 5 in relation (2), it is impossible 

except for special conditions to express y explicitly in terms of x by a finite 
number of one or more of the six operations of algebra. Nevertheless, even in 
such cases y is said to be an algebraic function of «. This is the reason for 

stating in Note | that our first definition did not include al/ algebraic functions 
as given by the second definition. However, as previously indicated, the first 
definition will be sufficient for our purposes. 

All functions which are not algebraic are called transcendental functions. 
Examples of such functions are the trigonometric, logarithmic, and ex- 
ponential functions. 

3.7. THE LINEAR COORDINATE SYSTEM 

We now give additional significance to the properties of real numbers by 
introducing the idea of the correspondence between a geometric point and 
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areal number. Consider, as in Fig. 1, a straight line ¥’¥ whose positive 
direction is from left to right as indicated by the arrow, and let O be a fixed 
point on this line. Next we adopt a convenient length as a unit of measure; 
thus, if A is a point on XX distinct from O and to the right of it, then the 
length OA may be considered the unit of length. If P is any point on X’X 
and to the right of O such that the length OP contains our adopted unit 
of length « times, we shall say that the point P corresponds to the positive 
number x. Similarly, if P’ is any point on X’X and to the /eft of O such 
that OP’ has a length of 2’ units, we shall say that the point P’ corresponds 

Pa O A 12 
x’ | ae eee — 

(x’) (0) (QQ) (x) 

Figure 1 

to the negative number 2’. In this way any given real number x may be 

represented by a point P on the line X’¥. And, conversely, any given 

point P on the line X’X represents a real number 2 whose numerical value 

is equal to the length of OP and whose sign is positive or negative according 
to whether P is to the right or left of O. 

Accordingly, we have constructed a scheme whereby a reciprocal 

correspondence is established between geometric points and real numbers. 

Such a scheme is called a coordinate system, the basic concept of analytic 
geometry, first introduced in 1637 by the French mathematician René 

Descartes (1596-1650). In the particular case under consideration, since 

the points all lie on the same straight line, the system is called a one- 

dimensional or linear coordinate system. Referring to Fig. 1, the line X’X 

is called the axis and the point O the origin of the linear coordinate system. 
The real number x corresponding to the point P is called the coordinate 
of the point P and is represented by (2). Obviously, in accordance with 

the conventions adopted, the origin O has the coordinate (0) and the 
point A has the coordinate (1). The point P with the coordinate (x) is 

said to be the geometric or graphic representation of the real number 2, 

and the coordinate (x) is said to be the analytic representation of the 

point P. 
We note, furthermore, that the reciprocal correspondence of the linear 

coordinate system is unique, for to each real number there corresponds 

one and only one point on the axis, and to each point on the axis there 

corresponds one and only one real number. 

The student will note that rea/ numbers only are considered in this co- 

ordinate system. The geometric representation of the complex number will 

be discussed later in our study of that number (Chap. 8). 
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We are now ina position to give a geometric interpretation of the mean- 

ing of the algebraic statement that one number is greater than another 

(Sec. 2.4). Thus, let the real numbers a and b be the respective coordinates 

of the points P and Q. If the point P lies to the right of the point Q on the 
coordinate axis, then a > b. The student should illustrate this statement 

by using various pairs of real numbers, both positive and negative. 
Finally, we note that the linear coordinate system is a convenient 

means for representing the real numbers in the range of a variable (Sec. 
3.2). But, in a functional relation (Sec. 3.3), if the linear coordinate 

system is used to represent the real values in the range of the independent 
variable x, some provision must be made for representing the correspond- 

ing values of the function or dependent variable y. This implies that for 
the geometric representation of the functional relation, another dimension 

is required. 

3.8. THE RECTANGULAR COORDINATE SYSTEM 

In a linear coordinate system, a point is restricted to lie on a single line, 

the axis. Therefore, we now consider a coordinate system in which a point 
is free to move to all positions in a plane. 

Y This is called a two-dimensional or planar 
coordinate system. There are various 

. care ise types of planar coordinate systems but 
B ate the one that we shall use is the rectangular 

coordinate system, which is illustrated in 

ae ola > * :~Fig. 2, where two directed lines X’X and 
Y’ Y,called the coordinate axes, are drawn 

perpendicular to each other. The hori- 
TE stan) IV(+,-) zontal line X’X¥ is termed the X-axis, the 

vertical line Y’Y the Y-axis, and O their 
point of intersection, the origin. The co- 

Figure 2 ordinate axes divide the plane into four 

regions called quadrants, numbered as 
shown in Fig. 2. As indicated by the arrows, the positive direction of the 
X-axis is to the right; the positive direction of the Y-axis is upward. 

Any point P in the plane may be definitely located by means of the 

rectangular system. Thus, draw PA perpendicular to the X-axis and PB 

perpendicular to the Y-axis. The length of the line segment OA is denoted 
by x and called the abscissa of P; the length of the line segment OB is 

denoted by y and called the ordinate of P. The two real numbers x and y 

are called the coordinates of P and are represented by (a, y). Abscissas 

y’ 
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measured along the X-axis to the right of O are positive and to the left 
negative; ordinates measured along the Y-axis above O are positive and 
below, negative. The signs of the coordinates in all four quadrants are 
indicated in Fig. 2. 

It is evident that each point P in the coordinate plane has one and only 
one set of coordinates (2, y). Conversely, any set of coordinates (x, y) 
determines one and only one point in the coordinate plane. 

yw 

> X 

y’ 

Figure 3 

In general, x 4 y for the coordinates (x, y) so that the point with the 

coordinates (x, y) is distinct from the point with the coordinates (y, 2). 

Accordingly, it is important to write the coordinates in their proper order, 

the abscissa appearing in the first place and the ordinate in the second. 

For this reason a set of coordinates in the plane is called an ordered pair 

of real numbers. In view of our previous discussion, we may then say 

that the rectangular coordinate system in the plane establishes a one-to-one 

correspondence between each point in the plane and an ordered pair of real 

numbers. 

The location of a point by means of its coordinates is termed plotting 

the point. For example, to plot the point (—5, —6), we first obtain the 

point A on the X-axis which is 5 units to the left of O; then from A, ona 



76 The Function Concept Ch, 3 

line parallel to the Y-axis, we lay off 6 units below the X-axis, thus arriving 
at the point P(—5, —6). This is shown in Fig. 3, where the points (2, 6), 

(—6, 4), and (4, —2) are also plotted. 

The plotting of points is greatly facilitated by the use of rectangular 
coordinate paper which is ruled into equal squares by lines parallel to the 
coordinate axes. An illustration of such paper is given in Fig. 3. It is 
recommended that the student employ coordinate paper whenever very 

accurate plotting is required. 
Once again, the student will note that this coordinate system makes no 

provision for the complex numbers of algebra. Hence, if either coordinate 
of a point is a complex number, such point has no existence in the 

rectangular coordinate system. 

3.9. GRAPHICAL REPRESENTATION OF FUNCTIONS 

We will now see how to use the rectangular coordinate system to give a 
geometric or pictorial representation of a functional relation. This process 
has a distinct advantage in that it presents to the eye a picture of the 
behavior of a given function of a single variable. 

Let us consider the functional relation or equation 

(1) y = f(«), 

which states that the dependent variable y is a function of the independent 
variable x. This means that for each value assigned to x, one or more 

corresponding values of y are determined. Each such pair of correspond- 

ing values of x and y is said to satisfy equation (1). We now take each of 
these pairs of real values as the coordinates (x, y) of a point in the rectangular 
coordinate system. This convention is the basis of 

Definition 1. The totality of points, and on/y those points, whose coor- 
dinates satisfy an equation (1) is called the /ocus or graph of the equation. 

Another convenient expression is given by 

Definition 2. Any point whose coordinates satisfy an equation (1) is 
said to /ie on the locus of the equation. 

That is, if the coordinates of a point satisfy an equation that point lies 
on the locus of the equation, and conversely, if a point lies on the locus 

of an equation, its coordinates satisfy the equation. This is, of course, the 

statement of a necessary and sufficient condition (Sec. 2.15). 
Since the coordinates of the points of a locus are restricted by its 
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equation, such points will in general be located in positions which, taken 
together, form a definite path called a curve as well as a graph or locus. 

Example 1. Plot the graph of the function 2x + 5. 
SOLUTION. Let y = 2x + 5. Since there are infinitely many pairs of 

corresponding values of x and y which satisfy this relation, we select only a 
Sufficient number to give an adequate graph, as shown in Fig. 4. Each 
pair of corresponding values, taken as the coordinates of a point, is 
plotted as shown. A smooth curve is then drawn through these points and 

ne 

ra o 

9 

7 — 

6 0 5 

5 1 7 

Mp, oD) 9 

3 —1 3 

2 —2 1 

1 —3 |-1 
| of ae L 

2 

Figure 4 

represents the graph of the given function. These points appear to lie 

on a straight line. As a matter of fact, it is definitely proved in analytic 

geometry that the locus of this function is a straight line. 

Example 2. Plot the graph of the function a? — 8a? + I5z, 

SOLUTION. Let y = x? — 8x? + 15x. By assigning certain values to x 
and computing the corresponding values of y, we obtain the coordinates 

of a suitable number of points, as shown in Fig. 5. Plotting these points 

and drawing a smooth curve through them we obtain the graph shown 

in Fig. 5. But in doing this we assumed that the graph between any two 

successive plotted points necessarily had the appearance resulting from the 

smooth curve drawn connecting the points. Although this is true for the 

particular graph under consideration here, it is not necessarily true for 

the graphs of all algebraic functions. However, for the polynomial 

function of a single variable, of which this function is an example, it is 

shown in the calculus that the graph is a smooth continuous curve. 
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It is appropriate at this time to call attention to a very important term, 
namely, the zero of a function. By a zero of f(x), we mean a value of x 
such that the corresponding value of f(a) is zero. Thus, —1 is a zero of 
the function 2x + 2. Graphically, the real zeros of f(x) are the abscissas 
of the points where the graph crosses the X-axis. Thus, as shown in Fig. 5, 
the real zeros of the function x? — 8x? + 152 are 0,3, and 5. We shall see 

subsequently that the determination of the zeros of functions is a basic 
problem of great importance in algebra. 

ve 

x y 

0 0 
1 8 

Paha #2 6 
3 0 
4.) 24 
5 0 
6 18 
[7 |= 24 

Figure 5 

NoTE. The student will observe that graphical representation has been 
restricted here to algebraic functions of a single variable. For functions of several 
variables, the problem becomes more complicated. For example, for functions 
of two independent variables, a three-dimensional coordinate system is required. 

This is primarily a problem of solid analytic geometry and will not be discussed 
in this book. 

EXERCISES. GROUP 10 

In each of Exs. 1-18, plot the graph of the given function. 

il, ae. 2.2 +1, Bh re il, 4. 2x, 

5, «>. O, we I, hee = il, 8. 1 — 2, 

94-22 10. V4 —22. W. =V4—e2 “12 Wate. 

13. 2b 1, 14, 2% — 52, 15. 2% — 4x +1, 

16. 1 — 4x — x?. 17a? — a. 18. 2? + x 
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In each of Exs. 19-27, plot the graph of the given equation. 

LOS 2a 208s yale 21.%+5=0. 

22.y —2 =0. 230 yee oe 1 24, 2 +y = 9, 

25. a + y* = 1. 26. y =x? —4z, 21, yf = 8, 

In each of Exs. 28-33, plot the graph of the given function and find its real 

zeros. 

28. a? — 1. 29. v2 —a —2. 80), ee = es Sh 

B ieee B22 2 33 eo se ee 

In each of Exs. 34 and 35, show by means of a graph that the given function 

has no real zeros. 

34. a? + 5$. Sis), Ged = Oe oe 2h 
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‘The linear function 

4.1. INTRODUCTION 

At the close of Chapter 3 we stated that the determination of the zeros 
of functions is a basic problem of great importance in algebra. One such 
function is the rational integral function of x of degree n, 

age” + aye" + anyx™ 2 +--+ +a,45% + a, Ay # 0; 

where 7 is a positive integer and dp, a), °** , a, are any constants but a) ~ 0. 

In this chapter we consider the particular case where n = 1. The function 
then takes the form 

(1) Apt + ay, ag =U: 

As previously noted in Example 1 of Sec. 3.9, it is proved in analytic 
geometry that the graph of the function (1) is a straight line. Accordingly, 

the function (1) is appropriately called the Jinear function. 

4.2. THE EQUATION 

An equation is a statement of equality between two expressions. These 

expressions are called the members or sides of the equation. Thus, in the 
equation 

wt 4= 52, 

the expression x + 4 is called the first or left member (side) and 5x is 
called the second or right member (side). 

We first consider two types of equations, the identical equation and the 
conditional equation. 

80 
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An identical equation, or simply an identity, is an equation in which 
both members are equal for all values of the variables for which these 
members are defined. In an identity the equality sign = is often replaced 
by the identity symbol =, read “is identically equal to.’’ Examples of 
identities are 

(1) (a — b)? = a® — 2ab + b?, 

(2) Ne Soe 
x—] —el 

Identity (1) is true for al/ values of a and b; identity (2) is true for all 
values of x except 1. 
A conditional equation, or simply an equation, is an equation in which 

both members are equal only for certain particular values of the variables. 
Examples of conditional equations are 

(3) aw— 5r+4=0, 

(4) Ca 

Equation (3) is true only for x = | and x = 4 and for no other values of 

x, that is, only on condition that x = 1 or 4. Equation (4) is true for 

infinitely many sets of values of x and y but not for a// sets of values; 
thus, (4) is true.for 2 = 1, y = 4 and for x = 2, ¥ = 3, and so on, but 

mot for other sets such as x = 3, y = 3 and x = 4, y = 2, and so on. 

NoTE. In an equation there are symbols whose values are either known or 

assumed known, while other symbols represent unknown values. Thus, in (3), x 

is an unknown number or variable, the numbers 4 and 5 being, of course, 

known; in (4), both x and y are unknown numbers, 5 being known. 

If an equation is reduced to an identity for certain particular values 
assigned to the variables, the equation is said to be satisfied for those 
values. (See Sec. 3.9.) Thus, equation (3) is satisfied when ~« is assigned the 

value 1, since the equation then reduces to the identity 1—-5+4=0. 
Also, equation (4) is satisfied for x = 1, y = 4, since it then reduces to 

the identity 1 + 4 = 5. 

Any number which satisfies an equation in one unknown or variable is 

called a root or solution of that equation. Thus, | is a root of equation (3), 

which may be written in the form 

ie) aaa soa te 0: 

Hence, | is a zero of f(x) (Sec. 3.9). In general, a zero of the function f(x) 

is a root or solution of the equation f(x) = 9. es 

A set of values of the unknowns which satisfies an equation containing 

two or more unknowns or variables is called a solution of that equation. 
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Thus, « = 1, y = 4 is a solution of (4). Evidently equation (4) has many 

solutions (Sec. 3.9). 

4.3. EQUIVALENT EQUATIONS 

The discussion in this section is restricted to a single equation in one 
unknown or variable 2, conveniently represented by 

(1) f(x) = 0. 

We shall discuss the determination of the roots of (1); this is called the 

solution of equation (1). The method generally consists in transforming (1) 

into another equation, say, 

(2) F(x) = 0, 

whose roots are more easily obtained than the roots of (1). Obviously 
this procedure is applicable if, and only if, the roots of equation (2) are 
the same as the roots of equation (1); these two equations are then said 

to be equivalent. 
Thus, « — 2 = 0 and 2x = 4 are equivalent, each having the single 

root 2. But x — 2 = 0 and 2? — 4 = 0 are not equivalent because the 

st equation has the single root 2 and the second equation has the two 
roots +2. 

We next consider those operations on a given equation which lead to an 
equivalent equation. We recall that in Chapter 2 we stated the equality 

law for each of the four operations of addition, subtraction, multiplication, 

and division. From these laws we may show that a given equation may 

be transformed into an equivalent equation by any of the following 
operations: 

1. If the same expression is added to or subtracted from both members 
of a given equation, the resulting equation is equivalent to the given 
equation. 

2. If both members of a given equation are multiplied or divided by the 
same nonzero known number, the resulting equation is equivalent to the 
given equation. 

Thus, with respect to operation 1 above, consider that the expression 
g(x) is added to both sides of (1) so that by the equality law for addition, 
we have the equation 

(3) f(&) + g(x) = g(x). 
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Let r be any root of (1) so that f(r) = 0. Substituting r for x in (3), we 
obtain the identity 

0+ g(r) = g(r), 
so that r is a root of (3). 

Conversely, let s be any root of (3) so that we have the identity 

(AOE SONS eas 
whence, by the equality law for subtraction, we have the identity 

f(s) = 9, 
so that s is a root of (1). Hence equations (1) and (3) are equivalent. 

Similarly, we may establish the validity of the other operations leading 
to equivalent equations. However, it must be noted that there is a dis- 
tinction among these operations, namely, that in addition and subtraction 

we may add or subtract any expression, which may include both variables 
and constants, but in multiplication and division we may multiply and 
divide only by a nonzero constant. 

If both members of the given equation are multiplied by an expression 
containing the variable, the new equation may have one or more roots 

which are not roots of the given equation. These new roots are called 
extraneous roots and the new equation is called redundant with respect to the 

given equation. 
As an illustration, consider the equation 

(4) = 3 
with the root 3. If we multiply both members of (4) by x — 2, we obtain 

the equation 

(5) a) =) 

with the roots 2 and 3. Hence equations (4) and (5) are not equivalent, 

2 is an extraneous root, and equation (5) is redundant with respect to 

equation (4). 

Another case may be noted. If both members of (4) are squared, we 

obtain the equation x? = 9 with the roots +3. Hence this operation has 

introduced the extraneous root —3. 

If both members of the given equation are divided by an expression 

containing the variable, the new equation may lack one or more of the 

roots of the given equation. The new equation is then said to be defective 

with respect to the given equation. 

As an illustration of this situation, divide both members of equation (5) 

by x — 2. We thus obtain the equation 

(6) on 
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Equation (5) has the roots 2 and 3 but equation (6) is defective with respect 
to equation (5), for it has only the root 3. 

Consequently, care must be exercised when performing operations on a 
given equation so that we do not introduce any extraneous roots and also 
do not lose any valid roots. In all cases the student should make it a 
fixed rule to check each root by substitution in the original equation. 

Finally, we call attention to an operation which is very simple but used 
frequently in the solution of equations. Consider any equation, say, 

(7) at+b=c—d, 

where a, b, c, and d are individual terms. By the equality law for addition, 
if we add d to both members, we obtain the equation 

(8) atb+d=ce. 

Comparing (7) and (8), we see that the term d has been transposed from 

the right to the left member by changing its sign. 

Also, by the equality law for subtraction, if we subtract b from both 
members of (7) we obtain the equation 

(9) a=c—d-—vb. 

Comparing (7) and (9), we see that the term 6 has been transposed from 

the left to the right member by changing its sign. Accordingly, we have the 

Rule of transposition. Any term may be transposed from one member of 
an equation to the other by merely changing its sign. 

4.4. THE LINEAR EQUATION IN ONE VARIABLE 

If the linear function in one variable (Sec. 4.1) is set equal to zero, we 

have the linear equation in one variable, 

(1) ax +b=0, Ga). 

where a and b are arbitrary constants. 
As a first step in the solution of this equation, we transpose b to the 

right member, thus obtaining the equivalent equation 

ax = —b, 

Next, by dividing both sides by a, we obtain the equivalent equation and 
solution 
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If this value of « is substituted in (1) we obtain the identity 

b 
a( —°) +b=—b+b=0. 

We record this result as 

Theorem 1. The linear equation in one variable, 

at+b=0, a0, 
: b 

has the unique solution r= —-, 
a 

Accordingly, to solve a linear equation in one variable, we transpose, 
if necessary, all unknown terms to one side and all known terms to the 
other side of the equation. 

Example 1. Solve the equation ax + 5? = a? + br,aXb. 

SOLUTION. Here, of course, it is understood that the unknown quantity 
or variable is 2, all other letters, therefore, being considered known 

constants. Accordingly, we proceed as follows: 

By transposition, ax — bx = a — Bb’. 

Combining terms, (a — b)x = a? — B?. 

Dividing by a — b,a #5, x=a+b. 

We check our solution by substituting the root a+b for x in the 
original equation. We obtain 

adat+b)+h=a+ ba+ bd), 

or the identity, a+ab+h=a?+ab+b’. 

: 2) 
Example 2. Solve the equation Mere TREN T Gps 

SOLUTION. A fractional equation, such as this, is first cleared of fractions 
by multiplying both sides by the L.C.D. of the fractions (Sec. 2.11). 
If the L.C.D. is a number, the resulting equation is equivalent to the 

original equation, but if the L.C.D. contains the variable, we may intro- 

duce extraneous roots (Sec. 4.3) which are the zeros of the L.C.D. In this 

problem, such possible extraneous roots are +2. 

Multiplying both sides of the given equation by the L.C.D., 2° — 5, we 

obtain 
5(a — 2) — 10 = 1(— — 2), 

5a — 10 — 10 = —z —2, 

whence Gx 15: 

and x = 3. 
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Now 3 is not an extraneous root but, for accuracy, it should be checked 

in the original equation. This is left as an exercise to the student. 

EXERCISES. GROUP 11 

In each of Exs. 1-20, solve the given equation and check the solution. 

[3 e5— 233 — 2 2.4 —2u = 3x + 14. 

Ce SUC — 6 a+3 2-3" 42 

a Soh oa od a raga ae NS 
5. 3x —(@ +3) =x + 4, 6. « — [4 —(@ + 1)] = 4¢ = 15. 

7. 22% — a) — (a — 2x) = 32, 8. ax —c + bx —d =0. 

9. (m+ n)x +(m —n)x =2m. 10. ax — B = a — bx, 

CC Cet x & 1 

hls shai a eee) eS ee 

13. (w@ + a)(w@ + b?) =(e@ + ab). 14. (@ + 1)(@ — 2) = 27 + 6. 

2u 3 1 1 2) 

Eh ane aera pS SER En are 
1 1 3 x+b x 

WG see ane | Pg Re 5 RP Jamey Mtnemny: 

Pee Gh aes af’+h b a-—b 

ie wire =e Trib Iianip Pata 
In each of Exs, 21-24, solve the given equation for y in terms of x and for x in 

terms of y. 

2 este 2 ==, 22. 4a — Sy = 10. 

23. bx + ay = ab. 24. ax + by +c =0. 

In each of Exs. 25-28, solve the given relation for the indicated letter in terms 
of the remaining letters. 

Zon A= PUT); t. 26. @, = a, + (n — 1) d; d. 

27 A Ugh i 28 ae te : o AY == AYN Vo s&l; Vo- _-.=- -; ; 

a Poo 

29. Show that each of the equations Vx + 1 = Veand V2 —1=Va+4+1 
has no solution. 

30. Show that the following equation has no solution: 

x+i1 6 4a? oes 

owl ~ gt — | e+e 1 

31. Solve and check: (Seat = ae (a a 
x j 
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32. Prove that if the same expression is subtracted from both members of a 
given equation, the resulting equation is equivalent to the given equation. 

33. Prove that if both members of a given equation are multiplied by the same 
nonzero number, the resulting equation is equivalent to the given equation. 

34. Prove that if both members of a given equation are divided by the same 
nonzero number, the resulting equation is equivalent to the given equation. 

35. Show that it is impossible for the linear equation ax + b = 0, a #0, to 
have two distinct solutions. 

4.5. PROBLEMS SOLVABLE BY A LINEAR EQUATION 

It is possible to solve a great variety of problems by means of the linear 
equation in one variable. The procedure generally consists in assigning 
some letter, say x, to represent the unknown quantity (or one of the 
unknown quantities). The next step is to construct an equation involving x 

and meeting the conditions of the problem. The final step is then the 

solution of this equation for the required value of x. In this whole 

procedure it is important for the student to understand that the letter x 
always represents a number. It is also important to check the solution by 

showing that it satisfies the conditions of the problem. 

Example 1. A certain piece of work can be completed by A alone in 4 

days and by Balone in 6 days. How long will it take them to complete the 

work together? 

SOLUTION. Let 2 = number of days required. 

: = part of work both can do in 1 day, Then’> 
x 

; = part of work A can do in I| day, 

; = part of work B can do in | day. 

ie aie! 
H = ence, eae ae 

Multiplying by 12%, 12 = 3x + 2z, 

2 : 
whence r= - = a5 days required. 

CHECK. In 22 days, the part of the work done by A is °° 4 = 3, and the 

part done by B is 47 °3 = 2; the sum of these parts is 3 + 3 = 1, the 

entire work. 
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Example 2. A mixture of 16 qt of alcohol and water is 25 per cent 

alcohol. How many quarts of alcohol must be added to obtain a mixture 

which is 50 per cent alcohol ? 

SOLUTION. Let « = number of quarts of alcohol to be added. Then 

16 + x = number of quarts in final mixture. In the original mixture there 

are }- 16 = 4 qt of alcohol. Then 4 + 2 = number of quarts of alcohol 

in final mixture. 
4+ 2 1 

Hence, yaar oo# 

whence 8+ 2% = 164+ 2, 

and « = 8 = number of quarts of alcohol added. 

CHECK. The final mixture = 16 + 8 = 24 qt. 
Total alcohol in final mixture = 4 + 8 = 12 qt = 50 per cent of 24 qt. 

EXERCISES. GROUP 12 

In each of the following problems, the result(s) should be checked. 

1. A wire 21ft long is divided into two parts such that the length of one part 
is three fourths of the length of the other part. Find the length of each part. 

2. The denominator of a fraction exceeds the numerator by 2. If each term 

of the fraction is increased by 5, the value of the fraction becomes 4. Find the 

fraction. 

3. Find three consecutive numbers whose sum is equal to 21. 

4. Find three consecutive even numbers whose sum is equal to 36. 

5. Find two numbers whose sum is 24 and whose difference is 6. 

6. Eight years ago a man was 7 times as old as his son, but now he is only 3 

times as old. Find the present age of each. 

7. If 4 of A’s age is increased by 4 of what it was 10 years ago, the sum is 

equal to 3 of his age 10 years hence. Find A’s age. 

8. Divide 40 into two parts such that if the quotient of the larger by the 

smaller is diminished by the quotient of the smaller by the larger, the difference 
is equal to the quotient of 16 by the smaller. 

9. Divide 72 into three parts such that 4 of the first part, 3 of the second part, 
and { of the third part are all equal. 

10. The units’ digit of a two-digit number exceeds the tens’ digit by 5. If the 

digits are reversed, the new number divided by the original number is equal to 3. 

Find the original number. 

11. If the side of a square is decreased by | ft, its area is decreased by 39 sq ft. 

Find the length of the side of the original square. 

12. The length (ft) of a room is equal to 3 times its width. If the length is 

decreased by 5 ft and the width is increased by 2 ft, the area of the room remains 
unchanged. Find the dimensions of the room. 
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13. A certain piece of work can be completed by A alone in 3 hours, by B 
alone in 4 hours, and by C alone in 6 hours. How long will it take them all 
together to complete the work ? 

14. One pipe can fill a tank in 2 hours, a second pipe can fill it in 3 hours, and a 
third pipe can empty it in 6 hours. If all three pipes are open, how long will it 
take to fill the tank, which is initially empty ? 

15. A and Bcan do a certain piece of work in 8 hours and A alone can do it in 
12 hours. How long will it take B alone to do it? 

16. A alone can paint a house in 8 days and B alone can do it in 6 days. How 
long will it take B alone to finish the job after both 4 and B have worked 3 days? 

17. A can do a piece of work in 4 hours and B can do it in 12 hours. B starts 
the work but after a time is replaced by A so that the entire work is finished 
exactly 6 hours after the start. How long did B work? 

18. A crew can row at the rate of 9 mi per hour in still water. If it takes them 
twice as long to row a certain distance against the current as it does to row the 

same distance with the current, find the rate of the current. 

19. A and B start at the same time from two towns to walk toward each other. 

If B walks 1 mi per hour faster than A, they meet in 6 hours. If A walks as fast as 
B, they meet in 5} hours. Find the distance between the two towns. 

20. A motor boat can go 10 mi downstream in the same time that it goes 6 mi 

upstream. If its rate each way is decreased 4 mi per hour, its rate downstream 
will be twice its rate upstream. Find its rate downstream. 

21. A can walk a certain distance in 20 minutes and B can walk the same 

distance in 30 minutes. If A starts 5 minutes after B, how long will B have been 

walking when A overtakes him? 

22. How many quarts of alcohol 20 per cent pure and of alcohol 30 per cent 
pure must be mixed together to obtain 100 qt of alcohol 25 per cent pure? 

23. How many ounces of silver 60 per cent pure and of silver 90 per cent pure 

must be mixed together to obtain 6 oz of silver 80 per cent pure? 

24. How many quarts of cream containing 25 per cent of butter fat must be 

added to 80 qt of milk containing 3 per cent of butter fat to obtain a mixture 

containing 5 per cent of butter fat. 

25. A tank contains 100 Ib of brine having a salt content of 5 per cent. How 

many pounds of pure water must be boiled off in order to obtain brine with a 

salt content of 8 per cent? 

26. At what time between 3 and 4 o’clock are the hands of a clock together ? 

27. At what time between 3 and 4 o’clock are the hands of a clock opposite 

each other? 

28. At what time between 4 and 5 o’clock are the hands of a clock at right 

angles to each other? 

29. A and B can pave a walk in 2 days; Band C can do it in 15 days; and A 

and C in 14 days. In what time can each alone do the work? 
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30. A boy has a certain amount of money. If he buys 10 pencils, he will have 

10 cents left; if he buys 4 notebooks, he will have 20 cents left; and if he buys 4 

pencils and 3 notebooks, he will have 10 cents left. How much money does he 

have? 

4.6. THE LINEAR EQUATION IN TWO VARIABLES 

The linear function in two variables is represented by the expression 

ax + by+c, abe 0, 

where a, b, and c are arbitrary constants and the restriction ab 4 0 means 

that neither a nor b can be equal to zero (Theorem 19, Sec. 2.15). 

If this function is placed equal to zero, we have the linear equation in two 

variables, 

(1) ax + by+c=0, ab $= 0. 

Solving (1) for y in terms of x and also for x in terms of y, we obtain, 

respectively, the equivalent equations 

a c 
2 Se Deo} (2) y oa 7 

(3) re i MD Gesu: 
a a 

As noted previously (Sec. 4.2), any one of these three equations has 
infinitely many solutions. Such equations are therefore said to be indeter- 

minate. But in connection with the solution of a definite problem, we must 
have a unique result which, evidently, cannot be obtained from a single 
equation in two variables. Suppose, however, that in addition to equation 

(1), we have another linear relation in x and y. We can then solve this 

relation for y in terms of x and equate it to the value of y given by (2). We 

may thus obtain a single equation in 2 alone which has a unique solution 

(Theorem I, Sec. 4.4). Similarly, by solving this relation for 2 in terms of y 

and using (3), we may obtain a single equation in y with a unique solution. 
It appears, therefore, that for a definite or unique solution involving two 

or more variables, two or more linear equations are required. Such a 
group of equations is called a system of linear equations. 

4.7. SYSTEM OF LINEAR EQUATIONS 

Consider the system of two linear equations in two variables, 

(1) ax + by +c, =), G0 3-0, 

(2) aye + bey + cy = 0, ab, # 0, 
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where x and y represent the same numbers simultaneously in both equa- 
tions. For this reason the equations are often called simultaneous. A set of 
values of x and y which satisfy both equations is called a common solution of 
the system. A system having only one common solution is said to have a 
unique solution. 

If this system has a unique solution, it may be obtained by eliminating 
one of the variables and then solving for the other variable. There are 
several ways of effecting this elimination. One method is by substitution, as 
indicated in the preceding article. Another is by addition or subtraction and 
will now be discussed. 

If we multiply equations (1) and (2), respectively, by the arbitrary 
constants or parameters k, and k,, we obtain the equivalent equations 

ky(a,x + by + cy) = 9, 

Kaz + bey + cy) = 0. 

Adding these equations, we obtain 

kK (ayz + by + cy) + ky(agu + boy + cy) = 0, 
Or 

(3) (kya, + kyay)x + (hyd, + keobo)y + (Aye + kec2) = 0, 

where k, and k, may assume any values except that both may not be zero 
simultaneously. Equation (3) is then called a linear combination of 
equations (1) and (2). 

Suppose that the system (1) — (2) has a unique solution, say x = 2, 

y = y,. Then, from equations (1) and (2), we have the relations 

(4) ax, + by, + | = 9, 

(5) yx, + bay, + Cc, = 0. 

If we now let x = x, and y = yj, in (3), we find in view of (4) and (5) that it 

reduces to 

k,-0+k,:0=0, 

which holds for all values of k, and ky. Hence, a unique solution of (1) and 

(2) is also a solution of (3). 

To effect the solution from (3), therefore, we need merely select those 

values of k, and k, which will eliminate one of the variables. Thus, to 

eliminate y from (3), we select values of k, and k, such that kb, = —kebo. 

Example 1. Solve and check the system 

By aL, 2a + 3y = 18. 

Illustrate the result graphically. 
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SOLUTION. If we multiply the first equation by 3 and the second equation 

by 2, we obtain the respective equivalent equations, 

9x — by = 3, 

4x + 6y = 36. 

Adding, 13x = 39, whence x = 3. 

Similarly, we may obtain y by a suitable linear combination. However, 
it is probably simpler to substitute « = 3 in the first equation and solve for 

y. Thus, 
9 — 2y = 1, whence y = 4. 

Hence, the solution is = 3, y = 4. It may be checked by substitution in 

each of the given equations. Thus, 

3(3) — 244) =9 —8 =1, 

2(3) + 3(4) =6 + 12 = 18. 

In Sec. 3.9 we noted that the graph of the linear equation in two variables 

is a straight line. The graphs of the two given equations are shown in Fig. 
6. Their point of intersection has the coordinates (3, 4), representing the 

common solution of the two given equa- 
vg tions. The graphs indicate that this solu- 

tion is unique. 

Up to this point we have considered 

(3,4) only systems having a unique solution. 
Yet a system does not necessarily have 

a unique solution. For example, the 
system 

eH y == 3, op y eat 2 

has no common solution at all. On the 
other hand, the system 

x+y=2, 2x + 2y = 4 

has infinitely many common solutions. In order to develop suitable 
criteria for determining the nature of the solutions of a linear system, we 
now consider the system 

(6) axr+by=c¢, ab,~0, 

(7) Aot ++ Delf == Cos Agb, # 0, 

To eliminate y, we multiply (6) by 6, and (7) by 6,, and then subtract, 
obtaining 

Figure 6 

a,bo% — agb,x = bec, — bj Cc, 

nents es else 
ayb, — ay, 
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Similarly, by eliminating x, we obtain 

[ — 
aby a agby 

This solution is valid, of course, if and only if a,b, — a,b, 40. If we 
substitute these values of x and y in the left member of (6), we obtain 

a, becy — byce = bog Ba Nr Ragas Se Aybycy — aybycg + aybycy — agbyc, 

a,b, — aby a,b, — agb, a,b, — agb, 

al C1(ayb, — dgby) phe 

ayby — agb, Wis 

that is, the solution satisfies (6). Similarly, the solution may be shown to 
satisfy (7). Hence the solution is unique and the system is said to be con- 
sistent. 

We now investigate the situation when 

a,b, i Ab, = OF 

a b 
whence G05 — 4,0, and = =". 

a, by 

Mea 2, — 0/0, — 7. where r--.0 As/a,constant,, Thenja, = ra,.and 

b, = rb,. Substituting these values in (6), we have the equivalent equation 

(8) rat + rhey = Cy. 

Multiplying both sides of (7) by r, we have the equivalent equation 

(9) Vast U5 — on 

We note that the left members of (8) and (9) are identical. Hence, if 

Cc, # rc, we have a contradiction. In this case we cannot have a common 

solution, and the system is said to be inconsistent or incompatible. 
But if c; = rcy, equations (8) and (9) are identical and therefore equi- 

valent to a single equation in two variables. In this case there are infinitely 

many solutions and the system is said to be dependent. If two equations 

are not reducible to the same form, they are said to be independent. 

We record the preceding results in 

Theorem 2. The linear system 

qe t+ by = c, a,0, = 9, 

a,x + bey = C2, ab, # 0, 

has the unique solution 

fe becy — byCe =, Gere BES! 

a,b, — gb, aby — gb, 

if and only if aby — agb, #0. The system is then said to be consistent. 
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If ayby — ayb, = 0, the system either has no solution and is said to be 

inconsistent or else has infinitely many solutions and is said to be dependent. 

NoTEs 1. Results analogous to this theorem may be obtained for the general 
case of a linear system of n equations in n variables. Discussion of this, however, 
will be deferred until the study of determinants in a later chapter. 

2. The student is advised not to use the results of this theorem as formulas for 
obtaining the solution of a linear system. It is preferable to employ the method 
of elimination used in Example | above. 

Example 2. Examine the system 

x— 2y = 4, 2a — 4y = —3 ‘. 

for a solution. Illustrate the result graphically. 

SOLUTION. If we attempt to eliminate either variable, the other variable 
is also eliminated. When this occurs, the system must be examined more 
critically. Thus, if we multiply the first equation through by 2, we obtain 
the equivalent equation 2% — 4y = 8, which, however, contradicts the 

second equation of the system. Hence the system is inconsistent and has 
no solution. 

The graphs of the two given equa- 
Y tions are shown in Fig. 7. Since they 
A are parallel lines, they have no point 

in common; this is the geometric illu- 
stration of no solution for the given 

>x system. 

Example 3. Examine the system 

x — dy = 4, 2x — 4y =8 

Figure 7 for a solution. Illustrate the result graphi- 

cally. 
SOLUTION. If we multiply the first equation by 2, we obtain the second 

equation. Hence the given system is dependent with infinitely many 

solutions. Both equations, being equivalent, are represented graphically 
by one line, the lower line in Fig. 7. 

The method of elimination for obtaining the solution of a linear system 
may be readily extended to systems of three or more equations. This is 
illustrated in 

Example 4. Solve and check the system 

L-py — 2 = 2; 

2e —y+2=3, 

2x + 2y — 2 = 3. 
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SOLUTION. We may reduce the given system to a system of two equations 
in two variables by eliminating one of the variables, say z. Thus, adding 
the first and second equations, we have 

32 + y = 5, 

and adding the second and third equations, we have 

4a + y = 6. 

The solution of this system of two equations is readily found to be x = 1, 
y = 2. Substituting these values of x and y in the first given equation, we 
have 

1F4—2=2 or 2=3) 

Hence the solution is x = 1, y = 2, z = 3. The student should check 

this solution by substitution in each of the given equations. 

Some very important conclusions and observations are given in the 
following notes. 

NOTES 3. We may infer from the preceding examples that the determination 
of a unique solution in 7 variables or unknowns requires a system of n independent 
equations. 

4. We note that in a system of 2 independent equations, we may eliminate 1 
variable, and in a system of 3 independent equations we may eliminate 2 

variables. In general, the elimination of n variables requires n + | independent 

equations. 

5. So far the number of equations in a given linear system has always been 
equal to the number of variables. If the number of equations differs from the 
number of variables, the system requires special treatment. Some particular 
cases of such systems are discussed in the later chapter on determinants, but the 

complete theory requires advanced treatment. 

4.8. PROBLEMS SOLVABLE BY A SYSTEM OF LINEAR 
EQUATIONS 

Many problems requiring the determination of two or more unknown 

quantities may often be solved by a system of linear equations. The 

unknown quantities are represented by letters, say «, y, etc. and a system of 

equations in these variables is then set up to meet the conditions of the 

problem. The solution of this system gives the values of the required 

quantities. The process is illustrated by several examples. 

Example 1. The total cost of 5 textbooks and 4 fountain pens is $32; 

the total cost of 6 textbooks and 3 fountain pens is $33. Find the cost of 

each. 
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SOLUTION. Let 2 = the cost of one textbook in dollars, and y = the cost 

of one fountain pen in dollars. 
Then from the conditions of the problem we have the two relations 

5a + 4y = 32, 

6x + 3y = 33. 

The solution of this system is readily found to be x = 4, y = 3, that is, the 

cost of each textbook is $4 and the cost of each fountain pen is $3. These 
results may be easily checked. Thus, cost of 5 textbooks and 4 fountain 
pens = 5(4) + 4(3) = $32. Cost of 6 textbooks and 3 fountain pens = 

6(4) + 3(3) = $33. ; 

Example 2. Find two numbers such that the sum of their reciprocals is 
5 and the difference of their reciprocals is 1. 

SOLUTION. Let 2 = the smaller number 
and y = the larger number. 

Then for the sum and difference of their reciprocals we have, respec- 
tively, 

This is not a linear system but may be treated as such in the unknowns 
1/x and 1/y. Thus, adding the two equations, we obtain 

eae 
x 

whence 2== 64 and a= 4, 

Subtracting the second equation from the first, we obtain 

2 = =4, 

y 

whence 2 = 4y and y = 3. 

Hence the two numbers are } and 4. It is left as an exercise to the 
student to check these results. 

NoTE. The similarity of the given system to a linear system will be apparent if 
we let wu = 1/« and v = 1/y so that we have 

u+v=5, 

We vs—ale 
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EXERCISES. GROUP 13 

In each of Exs. 1-6, solve and check the given system and illustrate the result 
graphically. 

1. 3a —-y=2, 22+ 3y =5., 2. x2+4y=7, 22 + 3y =4. 

3. 2 —3y=9, 37 4+ 4y = 5. 4. 3a+2y =0, 22 + Sy =11. 

5. 92 + Ty =0, Sx — 9y =0. 6. 2x —Illy=4, 424+ 7y =8. 

In each of Exs. 7-10, examine the given system for a solution and illustrate the 
result graphically. 

7. 3e+y=5, 62 +2y =7. 8. 40 — 29° = 4,0 Qe yy =); 
9. 2¢ —6y =2, « — 3y =3. 10. je +2y=1, 212 + by =3. 

In each of Exs. 11-17, solve and check the given system. 

LIZ Ze vit 7 Zane 

c Y x sy 4 CD ie ae on eS 

ae ey a a 2 oie aes a LAD CLIO — Te CLE dy iss 

Sq ye a Yn ee a te 6 

16. 4 + 2y —7z =3, w©—y —Sz=1, 22+ 4y4+2 =3. 

ee ee eee | 7 
I7.-+-=2, -+i=5, =+-=35. 
oy 6° pe 3% ee 6 

18. In the derivation of Theorem 2 (Sec. 4.7), verify the fact that the unique 

solution satisfies equation (7). 

19. In the system of Theorem 2 (Sec. 4.7) show that if c, and c, are both zero, 

the system has a solution x = 0, y = 0. The system is then said to be homo- 

geneous. 

20. Let ax + b, = 0, a, 40, and a,x + b, = 0, a, # 9, represent any two 

linear equations in one variable. Show that a necessary and sufficient condition 
for these two equations to be consistent is a,b, — a,b, = 0. 

In each of Exs. 21-30, check the results. 

21. If the numerator of a given fraction is increased by 1, its value is changed 

to 4; if the denominator is increased by 1, its value is changed to 4, Find the 

fraction. 

22. A sum of money was divided equally among a certain number of boys. 

If there had been two more boys, each would have received $1 less; if there had 

been two less, each would have received $2 more. Find the number of boys and 

the amount received by each. 

23. A two-digit number is equal to 8 times the sum of its digits; if the digits 

are reversed, the new number is 45 less than the original number. Find the 

original number. 
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24. The temperature C measured on the centigrade scale is a linear function 

of the temperature F measured on the Fahrenheit scale and may be represented 
by the relation C = aF + b, where a and 6 are constants. Determine these 

constants and hence this relation by using the facts that the freezing point for 

water is 0°C and 32°F and that the boiling point is 100°C and 212°F. 

25. A train ran a certain distance at a constant speed. If that speed had been 

increased 10 mi per hour, the trip would have taken 1 hour less; if the speed had 

been decreased 10 mi per hour, the trip would have taken 13 hours more. Find 

the distance and the speed of the train. 

26. If the width of a rectangular field is increased by 10 yd and its length is 
decreased by 10 yd, the area is increased by 400 sq. yd. If the width is decreased 
by 5 yd and the length is increased by 10 yd, the area is decreased by 50 sq. yd. 
Find the dimensions of the field. 

27. A certain straight line is represented by the linear equation av + by = 7, 
where a and #6 are constants (Sec. 3.9). Find a and 6 if the coordinates of two 

points on the line are (2, 1) and (—1, 3). 

28. It is shown in analytic geometry that a circle may be represented by the 
equation x? + y? + Dx + Ey + F =0 where D, E, and F are constants. 

Determine the values of these constants for the circle which passes through the 
three points whose coordinates are (0, 0), (3, 6), (7, 0). 

29. A and B together can do a certain piece of work in 13 days, A and C 

together can do it in 1§ days, and B and C together can do it in 22 days. Find 
the number of days in which each alone can do the work. 

30. The sum of the digits of a three-digit number is 6. If the hundreds’ and 
tens’ digits are interchanged, the new number is 90 more than the original 
number. If the tens’ and units’ digits are interchanged, the new number is 9 
more than the original number. Find the original number. 
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‘The quadratic function 

5.1. INTRODUCTION 

We continue our study of the rational integral function of « for the 
particular case of degree 2. The function is then called the quadratic 
function of x and is usually written in the form 

ax? + bx + ¢, t= (0 

where a, b, and c are constants. This function is of considerable impor- 

tance and occurs frequently not only in algebra but also in other branches 
of mathematics, in physics, and in engineering. 

5.2. THE QUADRATIC EQUATION IN ONE VARIABLE 

If the quadratic function of x is set equal to zero, we have the quadratic 
equation in one variable, 

(1) ax? + br +c=0, Te 0; 

where a, b, and c are constants. Equation (1) is also known as the standard 

form of the quadratic equation. 
By the solution of (1), we mean the determination of its roots (Sec. 4.2). 

Two methods are commonly employed for effecting the solution: one by 
factoring and the other by means of a formula. Each method is discussed 

in the following sections. 
99 
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5.3. SOLUTION BY FACTORING 

The first step in the solution of any quadratic equation by any method is 

to arrange the equation, if necessary, in the standard form, 

(1) ax? + bu +c=0, a= 0, 

The left member of (1) is an example of the general trinomial which may 
be factored into two linear factors (Sec. 2.9, type 4). Since the product of 

these two factors is equal to zero, each factor may be set equal to zero in 
accordance with Theorem 19 (Sec. 2.15). Hence the solution of (1) is 

reduced to the solution of two equivalent linear equations (Secs. 4.3, 4.4). 
In equation (1), the only restriction on the constants a, 6, and c is that 

a+#0. Hence either b or c or both may be zero. We will consider these 

cases first. 
If c = 0, equation (1) reduces to 

(2) ax* + bx = 0, 

which readily factors into 
x(ax + b) = 0, 

and is equivalent to the two linear equations 

== ax+b=0, 

with the solutions 0 and —b/a, which are the roots of (2). 

Similarly, we may show that if 6 = 0, the roots are ae = , and if 

= ¢ = 0, both roots are zero. " 

We now illustrate the general case, b 4 0, c £0, by an example. 

Example. By factoring, solve the equation 

(3) a+ 1?—a2=4. 

SOLUTION. We first arrange equation (3) in the standard form, 

(4) 2x* + 34 —2 = 0, 

Factoring the left member of (4), we have 

(2x — 1)\(@ + 2) = 0. 

Equating each linear factor to zero, we have 

2x—1=0 and +92 = 0; 

whence « = } and x = —2, respectively. Hence the required roots are 4 
and —2. 
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As previously noted (Sec. 4.3), the solution of an equation should 
always be checked by substitution in the original equation. Thus, for 

1 1 pth hel 
x = — in equation (3), we ha 2(5 )-=3-3= : 5 q (3) ve 5H a eS 4; and for 

x = —2, we have 2(—2 + 1)? — (—2) =2+2=4. Hence both roots 
check. 

5.4. SOLUTION BY FORMULA 

If the left member of a quadratic equation in standard form is easily 
factored, this is the preferable method of solution. But the solution of a 
quadratic equation may always be effected by a process known as com- 

pleting the square. This method can always be used even when the solution 
cannot be readily obtained by factoring. We will illustrate the procedure 
by an example. 

Example 1. Solve the equation 

2a7 — 2x —1=0. 

SOLUTION. The left member cannot be factored into linear factors with 
rational coefficients. We therefore use the method of completing the 

square as follows: 

Transpose the constant term to the right side of the equation, keeping 

the variable terms on the left side. Then 

Die = ip = Il. 

Next, divide through by 2, the coefficient of x’. Then 

The left member becomes a perfect square if we add to it the square of half 

ee 
the coefficient of x. Hence, adding | ae to both sides, we have 

(2-3) -3 or A) cae 
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Next, by extracting the square root of each side we obtain 

1 mie: 
C= 

2 2 

whence r 

1 

2 

Vural 3 1 
Hence the roots are and ees which the student may check 

by substitution in the original equation. 

Since the method of completing the square is a set procedure, we may 
employ it to obtain the roots of the standard quadratic equation and then 
use the resulting solution as a formula. Thus, for 

ax? + bu +c=0, a=; 

if we transpose c to the right member and then divide through by a, we 
obtain 

aoe u ae 
a a 

b 2 

To complete the square, we add (=| to both members. Then 
a 

: b b? 2 

Ce nO = 
a 4a” zy 4a° 

or (: + ale Pane 3 

2a. 4a” 

Extracting the square root of each side, we obtain 

(oe +./b? — 4ac 

2a 2a 
0 

ar ghd Desai ross 

2a 

which is known as the quadratic formula. 

Conversely, we may show by substitution that each of these values of 
satisfies the original standard equation. Accordingly, we have 

Theorem 1. The quadratic equation in one variable, 

ax? + br +c=0, (==). 
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has the solutions 

besa odie, 
a 2a 

Example 2. Solve the equation 

x+1 Me yt a 

t— 1 Tai S) 

SOLUTION. We first clear fractions by multiplying both sides of the 
equation by the L.C.D. (~ — 1)(a — 2). Thus 

w—ae—2—2774+ 3x -—-2= 272% —-x. 

Simplifying and arranging the terms, we obtain the standard form, 

a — 32+4=0, 

Since the left member cannot be factored into linear factors with rational 

coefficients, we use the formula of Theorem 1 above. Herea = 1,b = —3, 

c = 4, so that 

pe rot = 4a _ 34V9-16 3+ VTi 
2a 2 eee 

Since the only possible extraneous roots are | and 2, the required roots 

See a i 
Sara which may be checked for accuracy in the original equation. 

Many problems may be solved by quadratic equations. 

Example 3. A train traverses 300 mi at a uniform rate. If the rate had 

been 10 mi per hour greater, the time of the trip would have been | hour 
less. Find the rate of the train. 

SOLUTION. Let x = the rate of the train in mi per hour. 

Time of trip at original rate = 300/x hours. 

Time of trip at increased rate = 300/(x + 10) hours. 

a Oe eee 
“ g z+ 10 

Clearing fractions and arranging the terms in standard form, we have 

x? + 10x — 3000 = 0. 

Factoring, (x + 60)(« — 50) = 0, 

whence 2 = —60, 50. 

The value of x = 50 satisfies the original equation and meets the require- 

ments of the problem. 
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The value of x = —60 satisfies the original equation but does not meet 
the requirements of the problem and hence is rejected. A situation such as 
this soemtimes occurs in the solution of a problem by means of a quadratic 
equation. Sometimes both values may meet the conditions of the problem 
and hence there are two answers; in other cases only one value may be 

acceptable, as in the present problem. 

EXERCISES. GROUP 14 

In each of Exs. 1-24, solve the given equation by factoring, if possible; 

otherwise, by formula. Check each root by substitution in the original equation. 

1, 2 — 32 2 = 0; Dei tn) —— a) iO, 

3. 3y2 + 2y —1 =0. 4. 622 4+2—-2=0. 

5. (@ —2% +2 =a. 6. Ue + 12 —4 =a(x + 3). 
7. (« — 3)(@ + 2) = 6. 8. (y + 1)? — 3(y +: 1) = 4. 

ol ee 2 3x —5 2a + 4) 
9, —— + —_ = 1. 10. = ———_., 
x+3 c+] x+1 2x —3 

11. a? — 2% —1 =0. 12, 2? —27 +2 = 0: 

13. 9u2 — 12u —1 =0. 14. 402 — 120 + 11 =0. 

15. 2(@ + 2)? — (w — 1)? = 2” +7. 16. (w@ + 2)(@ — 1) =a 43. 

11 @ =e 1) = 2 18. 3(@ +1) = (@ + 4)? — 12. 
10 i 

19.2+— =6. 20. 9y —12 +- =0. 
2 y 

21. abu? — (a? + b*)x + ab =0. 22. x —2aw + a2 +h2 =0. 

23. «% — 2bx + b? —a = 0. 24. 402 — dav + a? = B?. 

25. In the derivation of Theorem 1 (Sec. 5.4), show that each of the roots 

obtained satisfies the original standard equation. 

26. From the equation 2? = a we obtain the equations +x = +a, but 

ordinarily we simply write « = +a. Show that the solution is identical in each 
case. 

27. The length of a room exceeds the width by 5 ft and the area of the room is 

150 sq ft. Find its dimensions. 

28. A and B together can do a piece of work in 1% hours, and A alone can do it 
in 2 hours less than B alone. Find the times in which A and B alone can do the 

work. 

29. A tank can be emptied by two pipes in 2 hours. How long would it take 
each pipe alone to empty the tank if one pipe can do it in 3 hours less time than 
the other pipe? 

30. One leg of a right triangle is 17 in. longer than the other, and the hypotenuse 
is 25 in. long. Find the lengths of the legs. 
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31. A bill of $600 is to be paid by the members of a club, each one to pay an 
equal share. Had there been 20 more members, the cost for each member would 
have been $1 less. Find the number of members. 

32. Find two numbers whose sum is 12 and whose product is 35. 
33. It is shown in physics that the distance s(ft) traversed by a body falling in a 

vacuum is given by the relation s = vot + 4¢f? where vy is the initial velocity 
(ft/sec) of the body, ris the time of descent (sec), and g is the constant acceleration 
of gravity (ft/sec”). Find the time required by a body to fall 100 ft in a vacuum 
if the initial velocity is 18 ft/sec and g is 32 ft/sec.” 

34. Solve the relation of Ex. 33 for t and explain why only one sign may be 
taken before the radical. 

35. The edges of two cubes differ by 2 in. and their volumes differ by 218 cu in. 

Find the edge of each cube. 

5.5. PROPERTIES OF THE QUADRATIC EQUATION 

If the roots of the general quadratic equation 

(1) axz2+ber+c=0, as, 

are represented by r, and r,, then from Theorem 1 (Sec. 5.4), 

—b + Vb? — 4ac pS ae 
(2) Lg a eae er a GND roar ae ace a 

2a 2a 

We now consider the nature of these roots when the coefficients of (1) 

are all real, that is, a, b, and c are all real numbers. It is evident that the 

roots depend upon the sign of the expression b® — 4ac under the radical 

sign. Thus, if b? — 4ac > 0, r, and r, are real and unequal; if b? — 

4ac = 0, r, and ry are real and equal; and if b? — 4ac < 0, r, and ry are 

complex and unequal. In this last case the two complex roots differ only in 

the sign before the imaginary term, that is, if one root is of the form m + ni, 

the other root is of the form m — ni, where i = /—1. Such roots are 

called conjugate complex numbers. 

In view of its significance, the expression b? — 4ac is appropriately 

called the discriminant of the quadratic equation (1). 

We summarize the preceding result in 

Theorem 2. Jf a, b, and c are all real numbers in the quadratic equation 

ax? + bu +c=0, Ge NV 

so that the discriminant D = b? — 4ac is a real number, then if D > 0, the 

roots are real and unequal; if D = 0, the roots are real and equal; and if 

D <0, the roots are conjugate complex numbers. 
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Corollary. Jf a, b, and c are all rational numbers, the roots are rational 

if and only if D is non-negative and a perfect square. 

NoTE. If the discriminant D is non-negative and not a perfect square, the roots 

are radical expressions of the form m + Vnandm — V nandarecalled conjugate 

quadratic surds. 

Example 1. Determine the nature of the roots of 

2a? + 5a —3 = 0. 

SOLUTION. Here the discriminant b? — 4ac = 57 — 4(2)(—3) = 25 + 

24 = 49 > 0. Hence, by Theorem 2, the roots are real and unequal. The 
student may easily verify this by actually finding the roots. Incidentally, 
this example also illustrates the corollary to Theorem 2. 

Since the roots (2) of the general quadratic equation (1) are expressed in 
terms of the coefficients, the sum and product of the roots may also be so 

expressed. Thus, for the sum, 

By et 0 (bee oes, ap heme ar Bore peach eat alk ee be of 
2a 2a a 

and, for the product, 

aS eae 4ac c 

2a 2a 

We state these results as 

Theorem 3. For the general quadratic equation, 

avz+be+c=0, @s=(0), 

the sum of the roots is equal to —b/a and the product of the roots is equal to 
c/a. 

Example 2. Find the value of & in the equation (A + 1)a® — (k + 8)a + 

10 = 0, if the sum of the roots is to be 8. 

SOLUTION. By Theorem 3, the sum of the roots is equal to minus the 
quotient of the coefficient of w by the coefficient of 2. Hence, 

beh cs I 2k + 16 = 9k + 9 and Rig, eo eee + =9k+9andk = 1. 

The student should verify this result by actually finding the roots. 

Example 3. Find the value of & in the equation (kK — 1)a2 — 5a + 
3k — 7 = 0, if one root is to be the reciprocal of the other. 
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SOLUTION. Let r denote one root. Then the other root is 1/r and their 
product is 1. But the product of the roots is also (3k — 7)/(k — 1). 
Hence (3k — 7)/(K — 1) = 1, whence 3k —7 =k — land k = 3. 

The student should verify this result. 

We next establish the following very important theorem. 

Theorem 4. /fr is a root of the general quadratic equation 

ax* + bx +c=0, a= 0; 

then x — r is a factor of the left member, and conversely. 

PROOF. Let f(x) = ax? + bx +c. 
Since r is a root of f(x) = 0, we may write 

f®) =ar+ br+c=0. 

By subtraction, we have 

(x) — f(r) = ax? + be + c — (ar? + br +c) 

or f(x) — 0 = ala? — r?) + D(x — 1). 

Hence, f(x) = («@ — r)[a(x + r) + 8], 

and x — r is a factor of f(x). 

Conversely, if x — ris a factor of f(x), we may write 

f(z) = («# — n)P@), 
where P(x) is the other factor. 

Then, for x =r, this last relation gives us f(r) = 0 by Theorem 19 
(Sec. 2.15), and r is a root of f(x) = 0. 

This completes the proof. 

Since r, and r, as given by (2) are the roots of the general quadratic 

equation (1), it follows from the preceding theorem that x — r, and x — r, 

are factors of ax? ++ bx +c. For the product of these factors we have 

Eee eee) (i b see) 
— — = = — + 

© ae rs) (2 # 2a 2a : 2a 2a 
\2 2 b2 b2 

= (24 2)- oa epee +E 

2a 4a" a a a a 

satay lg eee og 
a a a 

whence we can write the quadratic function in the factored form 

(3) ax? + ba + c = a(x — 4)(@ — Fp). 

The relation (3) suggests a method for factoring any general trinomial 

(Sec. 2.9, type 4). We illustrate the process by 
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Example 4. Factor 6x? — Sx — 6. 

SOLUTION. The roots of 622 — 5x — 6 = 0 are given by the formula as 

= 5 + V25 Pei = petri = a —-—. Hence the factors of 62? — 
12 12 2 3 

5a — 6 are 6(x — >) (x + *) = (2% — 3)(3x + 2). 

The equation (3) is particularly useful when we wish to determine 
whether a given quadratic expression is reducible in a particular number 
field (Sec. 2.8). Since the field is definitely determined by the nature of the 
roots r, and rp, all that we need do is evaluate the discriminant (Fheorem 2). 

Example 5. Examine the reducibility of the quadratic expression 

x? — 2x + 2. 

SOLUTION. The discriminant b* — 4ac = 4 — 4-2 = —4 so that the 
zeros of the given expression are conjugate complex numbers. Hence the 

expression is irreducible in the field of real numbers. 

We have already seen that the quadratic equation has two roots. We 

now investigate the possibility of there being more than two roots. 

Suppose that equation (1) also has the root r different from either r, or rz as 
given by (2). Substituting this value of x in (3), we have 

ar? + br +c =a(r — r,)(r — Pr), 

where all the factors in the right member are different from zero. Hence, 
by Theorem 19 (Sec. 2.15), 

ar? + br+c0, 

that is, ris not a root of equation (1). We state this result as 

Theorem 5. The quadratic equation 

axv*?+be+cec=0, (ot == (0) 

has only two roots and they are given by the expressions for r; and ry in (2). 

Heretofore we have solved the problem: Given a quadratic equation, 

determine its roots. We now consider the converse problem: Given the 

roots of a quadratic equation, determine the equation. The procedure is 
illustrated in 

Example 6. Form the quadratic equation whose roots are 4 and 3. 

SOLUTION. The equation may first be expressed in the form 
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Expanding, 

22 
x—-—er+1=0, 

12 
Multiplying through by 12 for greater neatness, we have the required 
equation 

12x? — 25a + 12 = 0. 

The equation may also be obtained by using the sum and product of the 
roots. 

EXERCISES. GROUP 15 

In each of Exs. 1-6, without solving the given equation, determine the nature, 
sum, and product of the roots. 

1. 2? +2 —6=0. N v?+4%4+4=0. 

3. 2 —25 +3 =0 4. (@ + 1)? =a — 1, 

1 is x 
Cie oe ae j A cieae: 

ae x—] x +] 

In each of Exs. 7-12, determine the value (s) of & for which the given equation 

has equal roots. 

7. kx? + 8% +4 =0. 8. a? — 3kx +9 =0. 

9.2 +ke +8 =k. 10. 2 + 3k +1 =(k +2). 

11. (KA + 4a? —1 =Qk +2)a —k. 12. (k — 1)a? — 2ka + kK? = 0. 

In each of Exs. 13-18, form the equation having the indicated roots. 

13.3, 14, 5, —3. 155s ey Os 

ioeie al — Tete fA S lie ay Sage 18 0 2031 ee, 
In each of Exs. 19-22, examine the reducibility of the given quadratic 

expression, and find its factors without restriction as to number field. 

19. a? — 7x + 10. 20. «2 + 4x + 1. 

21. 2 +22 +5. 92. 2a? — 2x + 5: 

23. If one root of the equation x? + kx — 2 = 0 is |, find the value of k and 

the other root. 

24. Find the value of k in the equation 2kx? — (12k + 1)x + 12 = 0 if the 

sum of the roots is to be 7. 

25. Find the value of k in the equation (k — 2)x® — 5x + 2k =0 if the 

product of the roots is to be 6. 

26. If one root of the equation (k* — 3)x® — 3(k — l)« —5k =0 is —2, 

find the values of k. 

27. If one root of the equation 3x” + (k — 1)x — 12 =0 is the negative of 

the other, find the value of k. 

28. Find the value of k in the equation (k + 2)x* + 10x + 3k =0 if one 

root is the reciprocal of the other. 
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29. Find the value of k in the equation «? — 3kx + 2k + 1 = 0 if the roots 

differ by 4. 

30. Find the values of k in the equation 2x” — 4x + k? — 2k — 3 = Oif one 

root is equal to zero. 

31. Find the values of a and b in the equation x + (2a + 3b — 1l)e@ +a — 

b — 3 = Oif both roots are equal to zero. 

32. Find the values of k in the equation 2ku? + 3x + k =0 if one root is 

twice the other. 

33. Find the value of k in the equation «? + (2k + 5)x + k =0 if one root 

exceeds the other by 3. 

34. Establish the Corollary to Theorem 2 (Sec. 5.5). 

35. Establish Theorem 4 (Sec. 5.5) by actually dividing ax? + ba +c by 

«x — r and then showing that the remainder is identically zero. 

36. Prove that a necessary and sufficient condition for a quadratic equation 

to have a zero root is that the constant term be zero. 

37. If one root of ax? + bx + c = Ois double the other, show that 2b? = 9ac. 

38. If the coefficients of ax? + bx + c = Oare real, a and b are both positive, 

and c is negative, show that one root is positive and the other negative. 

39. Show that if the complex number m + ni is a root of the general quadratic 
equation with real coefficients, then the conjugate complex number m — ni is 
also a root. 

40. Form the quadratic equation with real coefficients if one of its roots is 

1 + 2i where i = V —1. 

41. Show that if the quadratic surd m + Vn is a root of the general quadratic 

equation with rational coefficients, then the conjugate quadratic surd m — Vn 
is also a root. 

42. Form the quadratic equation with rational coefficients if one of its roots is 

fh Ry 

43. Prove that if the equation x? + bx + c = 0, where b and ¢ are integers, 

has rational roots, these roots must be integers. 

44. Show that the sum of the reciprocals of the roots of ax? + bx +c = Ois 
equal to —b/c. 

45. Show that the sum of the squares of the roots of aw? + be +¢ =0 is 
equal to b?/a® — 2c/a. 

5.6. EQUATIONS IN QUADRATIC FORM 

Heretofore we have considered the general quadratic equation 

(1) ax? + br +c=0, G0: 

where the unknown is simply the variable x. If, however, the unknown is 
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any other function of 2, say f(x), then (1) may be written symbolically in 
the form 

(2) alf(z)P + dif@j+c=0, a0, 

and equation (2) is said to be in quadratic form. Evidently the requirement 
for an equation to be in quadratic form is that only f(x) and its square 
appear in the equation. Hence, by a suitable substitution, equation (2) 

may be transformed into the form (1). For example, the equation 

x! — 7zx24+12=0, 

being an equation of the fourth degree, is not a quadratic equation, but it is 
in quadratic form since, if we let y = x, it may be written as 

y>— Ty+12=0. 

Solving this equation for the two values of y, we may set 2 equal to each 
value, and from these two equations obtain the required four roots of the 
given equation. The process is shown in 

Example 1. Solve: 2 — 7x? + 12 = 0. 

SOLUTION. Let y = 2 so that the given equation assumes the form 

y? — Ty+ 12=0. 

Factoring, (y — 4)\(y — 3) = 0. 

Hence, y = 4 and y = 3 from which we have 

a2 = 4, whence x = +2, 

and a Shwhence. = 4/3. 

These are the four solutions of the given equation. 
The student should also solve this equation by factoring immediately. 

3(a* + 1) 200 

ees 5a 

SOLUTION. This equation is not in quadratic form as it stands, and if we 

clear of fractions we obtain a fourth degree equation which is also not in 

quadratic form. However, we may note that the given equation involves 

reciprocals, in which case the proper substitution will lead to a quadratic 

equation. Thus, let 

Example 2. Solve: 

a + 1 

x 

y= 

Then the given equation becomes 

yaaa ae 
y 
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Multiplying by y, 3y2 — Ty +2 = 0. 

Factoring, (y — 2)(3y — 1) = 0, 

whence y= 2,4. 
2 

For Yy = 2, a a u = aD 

x 

whence xv —2x4+1=0, 

and ge = (I, I. 

2 

For = - tel = = 
3 ie 3 

whence 3¢4@ — a7 +3= 

14+ j/1—36 1+4./35i 
By the quadraticformula, 2 = =v = = est : 

1+./35i 
Hence, the required roots are 1, 1, Ley3t : 

Some equations that contain radicals involving square roots may be in 
quadratic form. In connection with such equations it is important to note 

a certain convention regarding the signs before the radicals. It must be 

understood as a matter of notation that, if no sign appears before the 

indicated square root of a quantity, the positive square root is always meant. 
If the negative square root is intended, the minus sign must appear before 
the radical. Thus the positive square root of a quantity 2 is written as 

Vx, the negative square root as —V x, and both the positive and negative 

square roots as +V x. 

Example 3. 2? + 3x — V2? + 3x —1—7=0. 

SOLUTION. To solve this equation we must eliminate the radical. One 
method is to transpose the radical to the right member and then to square 

both sides. This, however, leads to a fourth degree equation which is not in 
quadratic form. Furthermore, the operation of squaring may possibly 
introduce extraneous roots (Sec. 4.3). 

We may, however, proceed as follows. Although we cannot alter the 

radicand x + 3x — 1, we can rearrange the given equation thus: 

2 + 34 —1— Va2 + 32 -—1-6=0. 

Now let y = / xt + 3x4 — 1, the positive square root. 

Then yy—y—6=0. 

Factoring, (y — 3)\(y + 2) = 0, 

whence y = 3, —2. 
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Now, in accordance with our substitution, y can have only a positive 
value. Hence, 

Ve Bet eS. 

Squaring, a+ 32—1=9, 

whence x + 3x — 10 = 0. 

Factoring, (wv — 2)(a + 5) =0, 

whence = 2; —). 

Since both of these values check the original equation, they are the 
required solutions. 

If, contrary to our substitution, we set the radical equal to —2, we would 
obtain two extraneous solutions. 

5.7. RADICAL EQUATIONS 

An equation which contains one or more radicals involving the unknown 

quantity is called a radical equation. We consider here radical equations 
which involve only square roots and whose solutions lead only to linear or 

quadratic equations. Examples of such equations are Veit6+Ve—2 

—4=0and V2? — 32+ 4=2. 
To solve a radical equation we must eliminate the radicals by rationaliz- 

ing. The general procedure is to arrange the given equation so that a 

single radical appears alone on one side. Squaring both sides will then 
eliminate this radical. This process, known as isolating the radical, may 
then be repeated for each of any remaining radicals. 

Example 1. Solve: Ve 6 ye 2 — A= 0, 

SOLUTION. We first isolate one radical, say Vx — 2, by transposing it 

to the right member. Thus, 

4 ny aga” ev aa 

Squaring, x+6—8Vx+64 l6=2—-2. 

Isolating the radical and simplifying, —8V 2 + 6 = —24. 

Dividing by —8, Va + 6 = 3. 
Squaring, x+6=9, 

whence x = 3. 

By substitution we find that this value of x satisfies the original equation 

and is therefore the solution. 
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Note. At one step in the solution above we divided both sides of the equation 
by —8. Students commonly omit this step; consequently, in the subsequent 

squaring they have to deal with figures which are often unnecessarily large and 
awkward to handle. In this particular case the figures would all be 64 times as 

great as shown. 

Since the solution of radical equations involves squaring, it is highly 
important to check all solutions in the original equation in order to detect 
any possible extraneous roots (Sec. 4.3). We may note also that some 
radical equations have no solution whatsoever, as the following example 
illustrates. 

Example 2. Solve Vz — 3 — V2« + 2 =2. i 

SOLUTION. Transposing, V. G=— 3 — 2 SV 2e2: 

Squaring, ea AN) = 4 Ane De, 

Isolating the radical and simplifying, 

—4V2—3=24+1. 

Squaring, l6x — 48 = x? + 2x 4+ 1. 

Transposing, x? — 14x + 49 = 0. 

Solving, 2 = 7,7. 

If we substitute 7 for x in the original equation, we obtain 

VB NARS ea AD, 

Hence the given equation has no solution. 

EXERCISES. GROUP 16 

In each of Exs. 1-15, solve the given equation as one in the quadratic form. 

1, «1 — 1722 + 16 =0. 2. 22° + 17? —9 =0, 
By th ae Gree 4,024 —3¢4 +2 =0. 

5 Og Jon 5 = (i 6. «4 + 22% —3 =0, 

1 1 e—1? . fe — 1. (» +2) + a(s +2) SPs: 3(* -4(* * 4 
v x v x 7 

je — 9) x 1 1 
= eo Yaak i Va 7 pee 10.58 = tee 

x+3 «—3 a 
il). ee as cae 12. 222 —2e + Va? —@ = 3. 

13. 2? + Qn + Ve 4+ 22 + 10 — 20 = 0. 

14, 2a? +27 —3 V2 +e +3 —3 =0, 
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1+ V1 +22 x ee 
1$,. ——_ ——. +. ——____._ _ 9vV72 = = re DV, D—()) 

In each of Exs. 16-23, solve the radical equation and test for extraneous roots. 

16. Vz +24 Ve4+7=5, 17. V2 +2—V24+7=5. 

18. Va? — 32 +4 =2. 19. Ve +24 V2e45=5, 

20.1473 4 Vem =2. Die ey Pee ae Tf 

DOF Va — | —-V¥ 39° 1-10 Vie 1 =O. 

23: oe ee ee Ve BO: 

In each of Exs. 24-25, rationalize the given equation, that is, transform it into 

another equation which is entirely free of radicals. 

24. Ve + Vy =1. 

25. V@—3? +y¥2 + V@t+ 3 +y? = 10. 

5.8. GRAPH OF THE QUADRATIC FUNCTION 

The graph of the quadratic function ax? + bx + c,a ~ 0, is obtained by 
setting y equal to this function and then computing corresponding real 
values of x and y from the equation 

y=ax?+ bre, Dae) 

4 Y 
A 

ly 

= 

O = X 0 x 

(a) (b) 

Figure 8 

The number pairs are the coordinates of points which are plotted and have 

a smooth curve drawn through them (Sec. 3.9). The graph has the appear- 

ance shown in Fig. 8 and is called a parabola. Several facts about the 

parabola are proved in analytic geometry. Thus, if a > 0, the curve opens 

upward (Fig. 8(a)) and if a < 0, the curve opens downward (Fig. 8(d)). 



116 The Quadratic Function Ch. 5 

Furthermore, the curve is symmetric with respect to a vertical line called 

the axis of the parabola. The point of intersection V of the axis and the 

parabola is called the vertex. If a > 0, V is called the minimum point and 

its ordinate y represents the smallest or minimum value of the quadratic 

function. If a < 0, V is called the maximum point and its ordinate y repre- 

sents the largest or maximum value of the quadratic function. These facts, 

proved in analytic geometry, are recorded in 

Theorem 6. The quadratic function 

(1) ax® + bx + ¢, ase \, 

is represented graphically by the parabola 

(2) y=arvr+ bert+ec, 

whose axis is parallel to (or coincident with) the Y-axis, and whose vertex is 
the point (—b/2a, c — b?/4a). 

Ifa > 0, the parabola (2) opens upward and its vertex is a minimum point, 
and the quadratic function (1) has a minimum value equal to c — b?/4a when 

a = —b/2a. 

If a <0, the parabola (2) opens downward and its vertex is a maximum 
point, and the quadratic function (1) has a maximum value equal to c — b*/4a 
when « = —b/2a. 

Maximum and minimum values will be discussed further in the next 
section. We shall now consider the graphical representation of the zeros of 

a quadratic function and shall do this by means of actual examples. 

Example. Draw the graph and discuss the zeros of each of the following 
functions: 

(a) a — a — 2. (b) xv — 4a + 4. (c) a +a+42. 

SOLUTION. (a) Set y = 2? — x — 2 and obtain the coordinates of a 

suitable number of points as shown in the table of Fig. 9. The graph, 

Fig. 9, crosses the X-axis where x = —1 and x = 2 and these are the zeros 

of the given function or the roots of the equation «2 — x —2=0. The 

graph also shows that the function is positive for all values of x less than 
— land greater than 2, and is negative for all values of x between —1 and 2. 

(b) For y = a? — 4x + 4 we obtain the table of values shown and the 

graph given by Fig. 10. Here the graph does not cross the X-axis but 
touches it at the point where x = 2. This is a point of tangency and indi- 
cates that while there are two zeros, they are both equal to 2. In other 

words, the roots of x — 4a + 4 = O are both equal to 2. Also, the given 
function is positive for all real value of x except a = 2. 

(c) From y = x? + x + 2 we obtain the table of values shown and the 
graph given by Fig. 11. Here the graph neither crosses nor touches the 
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Figure 9 

Figure 10 

Figure 11 
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X-axis. Hence there are no real zeros. The roots of 2? + # +2 = Qare 

=] evs 
easily found to be the conjugate complex numbers Also, 

the graph shows that the given function is positive for all real values 

of x. 

5.9. MAXIMA AND MINIMA 

We now consider the algebraic determination of the extreme values 
(maximum and minimum) of the quadratic function ax? + bx + c,a #0, 

where a, b, c, and « are all assumed to be real numbers. 

We first note that the square of any rea/ number is either zero or 

positive. Hence the minimum value of the square of a real expression is 

zero. 
Next we transform the quadratic function by completing the square in 2. 

Thus, 

yaar? t betema(at ta) +e 
a 

a 4a” 4a 
whence 

b \ b2 

: oe (2 + | +c——. 
@) 2 2a 4a 

For any given quadratic function, a, b, and c are constanis and 2 is the 

only variable. Hence the value of y is controlled by the value assigned 
to x. We now examine the relation (1) for two cases: a>O and 

G0. 

a > 0. In this case y has no relative (finite) maximum value since it may 
be made as algebraically large as we please by assigning a sufficiently 

large numerical value to x. But it does have a minimum value when 
2 

(x ale Z| = 0 or « = —b/2a, and this minimum value is c — b?/4a. 

a <0. In this case y has no relative (finite) minimum value since it may 

be made as algebraically small as we please by assigning a sufficiently 
large numerical value to x. But it does have a maximum value when 

2 

(x + 5, = 0 or x = —6b/2a, and this maximum value is c — b?/4a. 
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These results are in agreement with Theorem 6 (Sec. 5.8). We record 
them as 

Theorem 7. The quadratic function ax? + bx + c, a0, where a, b, 
and c are all real constants, has an extreme value equal to c — b®/4a when 
x = —b/2a. This extreme value is a minimum when a > 0 and a maximum 
when a < 0. 

The value of this theorem lies in the fact that it may be used to solve any 
problem in maxima or minima which leads to a quadratic function in one 
variable. The general problem of determining maximum and minimum 
values for any function belongs to the calculus and will not be considered 
here. 

Example 1. Determine the extreme value of the quadratic function 

6 + x — x. Illustrate the result graphically. 

SOLUTION. Since the coefficient of x? is negative, the extreme value is a 
maximum which may be obtained directly by substitution in the results 
of Theorem 7. Thus, for a= —1, b = 1, c = 6, the maximum value is 

b? l 25 b I 1 
ees oe when a eee ee However, 

should the student forget these expressions he can always obtain the 

results by completing the square in 2, as in the derivation of Theorem 7. 

The graph of the function is shown 
in Fig. 12 with its maximum point and 
Zeros. 

We next consider a typical problem 
in maxima and minima which leads to 
a quadratic function. 

Example 2. The sum of two num- 

bers is 8. Find these numbers if the 

sum of their squares is to be a mini- 

mum. 
SOLUTION. Let 2 = one number. Then Figure 12 

8 — x = the other number. 

The general procedure in problems of this type is to express the quantity 

to be maximized or minimized as a function of a single variable. Thus, if 

S represents the sum of the squares of these numbers, we write 

S = 22 + (8 — x)? = 22? — 16x + 64. 

—16 
By Theorem 7, S has a minimum value when x = — io ee 4. 

Hence the required numbers are 4 and 4. 
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As noted in Example | above, should the student forget the formulas of 

Theorem 7 he can always effect the solution by completing the square. 

The student should illustrate this problem graphically. 

EXERCISES. GROUP 17 

In each of Exs. 1-6, determine the maximum or minimum value of the given 

function, and illustrate the result graphically. 

1. 40? + 16x + 19. 2. 24% — 3x” — 47. 

3. v2 — 6x + 9. 4. 4a — 2x? — 5, 

5.3 + 2a — 2, 6. 3 2 2 a: - 

In each of Exs. 7-12, determine the values of x for which the given function is 

positive, negative, and zero, and has either a maximum or minimum value. 

Illustrate the results graphically. 

Th, ee = Sap ha yo 8) Sa Sp plies 

ON ae 10022 

11.2? —2 +1. 12, @ =a? — 2. 

13. On the same set of coordinate axes plot the three functions x” — x — 6, 

x? — ax — 1, «2 — x +4, and note the effect produced by varying the constant 

term. 

The problems stated in Exs. 14-20 should be illustrated graphically. 

14. Divide the number 12 into two parts such that their product shall be a 

maximum. 

15. Find the number which exceeds its square by the greatest amount. 

16. The perimeter of a rectangle is 20 in. Find its dimensions if its area is to 

be a maximum. 

17. The sum of the lengths of the legs of a right triangle is constant and equal 

to 14in. Find the lengths of the legs if the area of the triangle is to bea maximum. 

18. Show that of all rectangles having a fixed perimeter, the one of greatest 

area is a square. 

19. A rectangular lot alongside a river is to be fenced in on three sides by 

100 ft of wire, no wire being required for the river side. Find the dimensions of 

the lot if its area is to be a maximum. 

20. A simple beam of length / feet is uniformly loaded with w pounds per foot. 

It is shown in mechanics that, at a distance of x feet from one support, the 

bending moment M in pound-feet is given by the formula M = 4wlx — $wa?, 
Prove that the bending moment has its maximum value at the center of the beam. 

In each of Exs. 21-23, let y = az? + ba + chea quadratic function such that 

the roots of y = 0 are r; and ry. 

21. If ry and ry are real and unequal, and r, > rz, show that y has the same 
sign as a when x > r,and x < ry, and is opposite in sign to a when r, > x > rg. 
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22. If r; and ry are real and equal, show that y has the same sign as a when 
e FTL. 

23. If r; and r, are conjugate complex numbers, show that y has the same 
sign as a for all values of x. 

24. Find the expression for the family or set of quadratic functions of « each 
of which has a maximum value of 4 when x = —2. 

25. Find the expression for the family or set of quadratic functions of « each 

of which has a minimum value of 5 when x = 3. 

5.10. THE QUADRATIC EQUATION IN TWO VARIABLES 

The general equation of the second degree in two variables x and y is 
represented by 

(1) ax* + bry + cy? + dx + ey + f=0, 

where the coefficients a, b, c, d, e, and f are constants with the restriction 

that at least one of the three coefficients a, b, and c is different from zero. 

Since equation (1) is a relation between the variables x and y, it will, in 

general, have a graphical representation (Sec. 3.9). It is shown in analytic 

geometry that the graph of equation (1), if it exists in real coordinates, is 

either a curve known as a conic section or else a limiting case which may be 

a point, a single line, or a pair of lines. 
The type of conic section represented by (1) depends upon the coeffi- 

cients. In order to obtain the graph and properties of this curve most 
easily, the equation is usually transformed into a simpler form. We list 
here some of these simplified equations together with their graphs. 

The circle 

The equation 2? + y? = r* represents a circle with its center at the origin 

and having a radius r (Fig. 13). 

The parabola 

The equation « = ay? + by + c, a 0, represents a parabola (Fig. 14) 

whose axis is horizontal and which opens to the right if a > 0 and to the 

left if a <0. The point V is the vertex. 

We have previously noted (Sec. 5.8) that the equation y = ax? + bx + ¢, 

a #0, represents a parabola whose axis is vertical and which opens 

upward if a > 0 and downward if a < 0. 

The ellipse . 

The equation ax” + by? = c, where a, b, and care all positive, represents 
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an ellipse (Fig. 15). In the particular case where a = 6, the equation 

represents a circle. 

The hyperbola rs 

The equation ax* — by? = c, where a and 6 are positive and c= 0, 

represents a hyperbola (Fig. 16). 

Figure 13 Figure 14 

W vA 
A A 

xX O xX 

Figure 15 Figure 16 

Each of the four curves described above may be obtained as a plane 
section of a right circular cone. For quadratic equations in two variables, 

which are different in form from the types listed above, the graphs will be 
similar in appearance but differently situated with respect to the coordinate 
axes. 

5.11. SYSTEMS OF EQUATIONS INVOLVING QUADRATICS 

We now consider a system of two equations in two variables involving 
quadratics in much the same manner that we discussed a system of two 
linear equations in two variables (Sec. 4.7). Consider, therefore, the 

system of two quadratic equations 

(1) ax + byey + cy? + dx +eyt+ fi =0, 

(2) aye” + boxy + coy? + dye + ey + fy = 0, 
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where the coefficients have the same significance as specified for equation 
(1) in Sec. 5.10. A common solution of this system may be obtained by 
eliminating one variable, say y, and then solving for 2. Thus, we may 
solve equation (1) for y in terms of « by means of the quadratic formula, 
treating x as if it were a constant. If we substitute this value of y in equa- 
tion (2) and rationalize the result, we obtain, in general, an equation of the 
fourth degree in 2 which, as we shall see in a later chapter, has four 
solutions. 
Up to this point, however, we have not considered the general solution 

of equations of the fourth degree. Hence, in this chapter we will restrict 
our discussion to certain systems of special types whose complete solution 

may be effected by solving only linear and quadratic equations. These 
types are discussed in the sections immediately following. 

5.12. SYSTEM HAVING ONE LINEAR EQUATION 

If one equation is linear and the other quadratic in a given system, the 
solution may be effected by substituting from the linear into the quadratic 
equation. This operation is often performed in mathematics and may be 
described as substituting the simpler into the more complicated relation. 

Example. Solve the system 

(1) Bo — Gye, 

(2) xe? + y? = 4, 

and illustrate the results graphically. 

SOLUTION. From equation (1), y = x — 2. Substituting this value of y 

in (2), we have 

et+aet—444+4=4, 

whence 2x? — 4x = 0, 

and (ai 2 i—"0;, 

so that the roots are x = 0, 2. The corresponding values of y are obtained 

from (1). Thus, for 7 = 0, y = —2, and for = 2, y = 0. We see then 

that the system has two common solutions; they are x = 0, y = —2 and 

a = 2,y = 0. Each solution should be checked by substitution in each of 

the given equations. 

The graph of equation (1) is a straight line; the graph of equation (2) is 

a circle of radius 2 with its center at the origin. These graphs are shown in 

Fig. 17. A real solution of an equation in two variables represents the 

coordinates of a point on the graph of the equation (Sec. 3.9). Hence a 

common real solution of two equations represents the coordinates of a 
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point on the graphs of both equations and therefore must represent the 

coordinates of their point of intersection. The common solutions therefore 

give the two points of intersection, (0, —2) and (2, 0), as shown in Fig. 17. 

We next consider the case in which we do not have two distinct real 
common solutions, as in the preceding example. Suppose, now, that our 
system consists of equation (2) above and the linear equation 

(3) 2—y+2V2=0. 

By the previous process we find that while this system has two solutions, 

they are both equal, namely, 7 = ae: 

y = V2. Hence there is only one point 
of intersection of the graphs of (2) 
and (3); it is called a point of tangency 

with the coordinates (4 AVP) as 

shown in Fig. 17, and the line (3) is 
said to be tangent to the circle (2). 

Finally, let us consider the system 
consisting of equation (2) and the linear 
equation 

(4) x—yt4=0. 

Figure 17 The common solutions of this system 

are found to be e=24+ V2iy= 

—24+V2iande=2-—V2i, y= —2—-— \/2i. These solutions are both 

complex and, since only real coordinates can be plotted, it means that the 
line (4) and the circle (2) do not intersect, as shown in Fig. 17. 

We have thus illustrated the algebraic and geometric analogs fora 

system consisting of a quadratic and a linear equation in two variables. 

NOTE. In obtaining the solutions of a system of equations involving quadratics 
the student must be careful to pair off the values properly. Interchanging values 
will give incorrect solutions which may always be detected by checking in the 
original system. 

5.13. SYSTEM OF EQUATIONS OF THE FORM ax? + by? = c 

If each equation of the system is of the form az® + by? = c, the system 
should first be solved as a linear system in 2? and y? (Sec. 4.7), The required 
values of a and y may then be obtained by the simple extraction of square 
roots. 
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Example. Solve the system 

(1) x? + 4y? = 8, { 
(2) 2x* — y = The 

and illustrate the results graphically. 

SOLUTION. We first solve the given 

system for a? and y?. Thus, multiplying noe 
(2) by 4, we have . 

(3) 8x? — 4y? = 28. 

Adding (1) and (3), 9a? = 36, Figure 18 

whence 2?=4 and x= 42. 

Substituting this value of x? in (2), we have y? = 1 andy = +1. 

The student must be careful to note that there are actually four and not 
two solutions, for each value of x may be paired with both values of y. 
Thus the four solutions may be shown as paired in the following table: 

The solutions are shown graphically in Fig. 18. 

EXERCISES. GROUP 18 

In each of Exs. 1-10, solve the given system and illustrate the results graphically. 

(lL, Pap 7 DB aD, 

y? = x. a + y® = 4, 

3. 2e +y=4, 4. 3x —y —8 =0, 

y2 — 4a = 0. a2 + y? — 4x — 6y + 8 = 0. 

5. 2x — 3y =5, 6:%« —y +2 =0, 

2a? ++ 3y? = 5. y? — 8« =0. 

i, ea op SS. 8. 2x —y +2 =0, 
x? ty? = 9, y* = 4a, 

9. z—y =0, 10. ety =I, 

2a? — ay + 2y? = 3. a? — 2Qey + y® —2e —2y +1 =0. 

11. Find the values k must assume in order that the straight line y =x +k 

may be tangent to the circle x2 + y? — 10v + 2y + 18 =0. 

12. Find the value k must assume in order that the straight line x + y =k 

may be tangent to the parabola y? = 82. 
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In each of Exs. 13-20, solve the given system and illustrate the results 

graphically. 

13. 22 +42 =4, 14) a 
Ay? — 22 = 4, Qu? + 16y? = 145. 

15. 4a? + 9y? = 36, 16. x? + 4y? = 16, 

Qu? + 4y? = 36. a + y? == 9, 

17. #2@ty = 16, 18. a + y? = 7, 
a2 + 16y2 = 144, 2y2 — 22 = 4, 

19. a2 + y? =1, 20. 2 +y? = 1, 

a — y? = 4, a2 + y? = 4, 

21. Find two positive numbers such that the sum of their squares is equal to 

29 and the difference of their squares is equal to 21. 

22. The perimeter of a rectangle is 34 ft and the diagonal is 13 ft long. Find 
the dimensions of the rectangle. 

23. Find the dimensions of a rectangle if its perimeter is 80 ft and its area is 

SHOISC Tk. 

24. Find the values of & in terms of m and r if the straight line y = mx + k is 

to be tangent to the circle a? + y? = r?. 

25. Find the value of k in terms of p and m if the straight line y = mz + k is 

to be tangent to the parabola y? = 4pz. 

5.14. SYSTEM OF EQUATIONS OF THE FORM 

ax* + bey + cy? =d 

If both equations lack terms of the first degree, the solution may be 
effected by either of two methods which are illustrated in the following 

Example. Solve the system 

(1) e—ay+y= 

(2) Reh ty ye = 1 

and illustrate the results graphically. 

SOLUTION. Method 1. Elimination of the constant term. To eliminate the 

constant term we multiply equation (2) through by 3, obtaining 

(3) 3x + bry — 3y? = 3. 

Subtracting equation (1) from (3), member by member, we have 

2a" + Tey — 4y? = 0, 

| w 

which is free of a constant term and may be factored thus, 

(2x — y)(x + 4y) = 0, 
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whence we have the two linear relations, 

(4) 2x—y=0 or y=2z2, 

(5) 2+4y=0 or i 

We have thus reduced the given system to two simpler systems, each of 
which has a linear equation (Sec. 5.12). Thus, solving equation (4) with 
either of the equations (1) or (2), we find 2 = +1 and hence the corre- 
sponding values of y are given by y = 2x = +2. Similarly, solving (5) 

(- $7, vy 

(4 V7-v7/7) 

Figure 19 

with either of the equations (1) or (2), we find # = +£4V7 and hence the 

© 7 
corresponding values of y are given by y = — haa + —. Accordingly, 

i 

ee NS 
the four required solutions are given by (1, 2), (—1, —2), Baia ibe 

ENG) 
(— ane =I These solutions are shown graphically in Fig. 19 where 

a 
the ellipse is the graph of (1) and the hyperbola is the graph of (2). : 

Method 2. Use of the substitution y = vx. If we make the substitution 

y = vx in both equations (1) and (2), we obtain, respectively, 

(6) eee 3 OF 

(7) e+ Qo — ve? = 1 or 2? = ———__. 
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Equating these values of x, we have 

z) i 1 

(ojo? ee Tee 

whence 34+ 60 — 3vU = 1—v4 vw’, 

and 4v2? — Jv —2 =0 

whose solutions are v = 2 and v = —4. 

If we substitute v = 2 in either of the relations (6) or (7) we find 2? = 1 

whence « = +1, and the corresponding values of y are given by y = va = 

2x = +2. Similarly, if we substitute v = —} in either of the relations (6) 

or (7), we find «= 44 whence + = +4y/7, and the corresponding values 

; x V7 
of y are given by y = vx = SS aaa 

These results are in agreement with those obtained by Method 1. The 
geometric significance of the substitution y = vz is illustrated in Fig. 19 by 

x 

the dotted lines whose equations are y = 2% and y = — q' 

NoTE. If either equation of the system has a constant term equal to zero, that 
equation may be factored immediately as in Method 1. 

5.15. OTHER SYSTEMS 

There are other systems of equations whose solutions may be obtained 

by the solution of a quadratic. Some of these systems are shown in the 
examples of this article. 

An equation in the two variables x and y is said to be symmetric with 
respect to those variables if the equation remains unchanged when 2 and y 
are interchanged. Examples of such equations are « + y = 3 and a2? + 

ay + y? =7. A system of two equations, both of which are symmetric 

with respect to x and y, may be solved by means of a substitution as 
shown in 

Example 1. Solve the system 

(1) oy — ae —y = 2, 
(2) sytaty=S. 

SOLUTION. If we make the substitutions « = u+v and y=u— vin 
equations (1) and (2), we obtain, respectively, 

(u + v)? + (u — v)? — (u+ v) — (u—v) = 2, 

(u+ v\u—v)+(u+v)+(u—v)=5. 
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Upon simplification, these equations reduce, respectively, to 

(3) w+eoe—u=l, 

(4) u®— y+ 2u= 5. 

By adding these two equations and eliminating v?, we obtain 

2u2+u—6=0 

whose solutions are u= —2, 3. 

Substituting uw = —2 in either equation (3) or (4) we obtain v = +V 5, i, 
and for u = 3 we obtain v = +}. The four solutions are then con- 

veniently obtained by the following tabular arrangement. 

We may also effect the solution of some systems in which an equation of 

degree higher than two appears. This is illustrated in 

Example 2. Solve the system 

(5) iia lee 
(6) e—ayt+y=3. 

SOLUTION. In this system we note that equation (5) is exactly divisible by 

(6), giving us the relation 

(7) vile Se) eae 

As in Sec. 5.12, we may complete the solution by solving either the 

system of equations (5) and (7) or the system of equations (6) and (7). The 

student should show that in either case the solutions are (1, 2) and (2, 1). 

It is sometimes possible to solve a system by more than one method. 

This is illustrated in 

Example 3. Solve the system 

(8) oe a = 13, 

(9) CY =i —— Oy 
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SOLUTION. This system may be solved by the methods of Sec. 5.14 and 

also by the method of Example 1 above as a symmetric system. We now 

consider another method. 

If we multiply equation (9) by 2 and add the result to and subtract the 

result from equation (8), we obtain, respectively, the relations 

a+ 2ey + y? = 1, 

x? — 2ey + y? = 25. 

Extracting the square root of both sides of each equation, we have, 

respectively, ‘. 

aty=+!l, 

x—y = +5. 

Using all possible combinations of signs, we have here four linear equations 
from which, by addition and subtraction, we have, respectively, 

2x = 6, —6, —4,4 whence x = 3, —3, —2, 2, 

2y = —4,4,6, —6 whence y = —2, 2, 3, —3. 

Hence the solutions are (3, —2), (—3, 2), (—2, 3), (2, —3). 

EXERCISES. GROUP 19 

In each of Exs. 1-6, solve the given system by either method of Sec. 5.14, and 
illustrate the results graphically. 

1 +y? =5, 2 oP = & 

wy = 2. ay = 3, 

3. a + y? = 8, 4. xy + 4y? = 8, 
x2 — xy + 2y? = 16. et + 3ayjmei28: 

St y*? — a = 16, 6. v2 + ay + y? =7, 

2y? — day 4-327 = 17, x —axy —y? = 11. 

7. In Method 1 of the example of Sec. 5.14, explain why the results are the 
same whether we solve each of the linear equations (4) and (5) with either of the 

given equations (1) or (2). 

8. In Method 2 of the example of Sec. 5.14, explain why the results are the 
same whether we substitute the values of v in either of the relations (6) or (7). 

9. Solve Example 2 by the method of Example 1 of Sec. 5.15. 

10. Solve Example 3 of Sec. 5.15 by the methods of Sec. 5.14. 

11. Solve Example 3 of Sec. 5.15 by the method of Example 1 of Sec. 5.15. 
12. Solve Ex. 1 by the method of Example 1 of Sec. 5.15. 

13. Solve Ex. 1 by the method of Example 3 of Sec. 5.15. 
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In each of Exs. 14~17, solve the given system by the method of Example | of 
Sec. 5.15, and check the results. 

14, a + y? + 2x + 2y = 23, 15. 289 4 9? + cy = 7, 

cy = 6, ey? — sy = 3. 

16. 2 + y? — 2x — 2y = 14, 17. af + y* = 17, 
xytu+yt+5=0. e+y=1. 

18. Solve Ex. 15 by the methods of Sec. 5.14. 

In each of Exs. 19-27, solve the given system by any method, and check the 

results. 

19, a2 + y? = 25, 20. 23 + y? = 28, 
xy = —12. 

ak x — y3 = 56, 

xe + ary +y? = 28. 

23. 2y? — xy — x? = 44, 

ety =4. 

DP, utes er 126; 

x — avy + y* = 21. 

24, #3 + y8 = 9ay, 
xy + 3y? = 80. ety =6, 

25, 2 + y? = 407%y?, 26. a2 +a” = 6y, 
x+y = Bry. a3 +1 = 9y. 

aig h a? + y? — 4a — 6y + 8 = 0, 

3x2 + 3y? + 122 — l6y — 10 = 0. 

28. Find two positive numbers whose sum, added to their product, is 34, and 
the sum of whose squares diminished by their sum is 42. 

29. Find two positive numbers whose sum is equal to their product and whose 
sum added to the sum of their squares is 12. 

30. A and Bruna mile race, B winning by | minute. They run the same race 
a second time, A increasing his speed by 2 mi an hour and B decreasing his speed 
by the same amount. A wins by | minute. Find their original rates. 
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Inequalities 

6.1. INTRODUCTION 

We first discussed the concept of inequality in connection with the 
operation of subtraction and the introduction of negative numbers (Sec. 
2.4). We have had little occasion, otherwise, to refer to unequal numbers 

and inequalities. Now it is our purpose to make a formal study of inequali- 
ties and their properties in this chapter. 

The subject of inequalities is of considerable importance in many parts of 
algebra, and we shall see instances of this in our later work. We shall also 
observe certain analogies between equalities and inequalities. 

In determining the relative magnitude of numbers we are said to be 

ordering such numbers. The order relation is restricted to real numbers and 
is illustrated geometrically in the linear coordinate system (Sec. 3.7). In 

other words, all of our work on inequalities will apply only to real numbers. 
We do not speak of one complex number being greater or less than another. 

Previously we have given some definitions of terms and symbols 
pertaining to inequalities. For convenience, however, these definitions 

will be repeated in the next section. 

6.2. DEFINITIONS AND FUNDAMENTAL THEOREMS 

We have already defined an equation as a statement of equality between 

two expressions (Sec. 4.2). If two expressions are unequal, we have an 
inequality, and one expression is then said to be greater or less than the 
other. 

The real number z is said to be greater than the real number y provided 
that « — y is a positive number. We then write 2 > y, which is read ‘‘x is 

greater than y.”” Thus, 2 > —3, for 2 — (—3) = 5, a positive number. 

132 
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It follows from this definition that the real number y is /ess than the real 
number x provided that y — x is a negative number. We then write y < a, 
which is read “‘y is less than x.’’ Thus, 5 < 7, for 5 — 7 = —2, a negative 
number. 

The student should note that, for either inequality symbol, the larger 
quantity is always at the opening of the symbol which is pointed toward 
the smaller quantity. We may also note two other useful symbols: a > 4, 
which is read “‘a is greater than or equal to b,”’ and c < d, which is read 
“ec is less than or equal to d.”’ In particular, the inequality a >0 is a 
convenient way of stating that a represents all non-negative numbers. 
Two inequalities are said to have the same sense if their symbols point in 

the same direction; otherwise they have the opposite sense. Thus the 
inequalities a > b and c >d have the same sense, but the inequalities 
a > band c < d have the opposite sense. 
We previously called attention to two types of equations, the identical 

equation and the conditional equation (Sec. 4.2). Similarly, there are two 

types of inequalities, the absolute inequality and the conditional inequality. 
An absolute or unconditional inequality is one that has the same sense for 

all values for which its members are defined. Examples of absolute 
inequalities are 5 > —7 and2?+ 1>0. 

A conditional inequality is one that has the same sense only for certain of 

the values for which its members are defined. Examples of conditional 

inequalities are 
x — 2 < 3, true only if x < 5; 

= = 4. true only uw = 2 or ily 2: 

Absolute and conditional inequalities will be discussed in subsequent 

sections. We will now establish some of the fundamental properties of 

inequalities. 

Theorem 1. The sense of an inequality remains unchanged if the same 

quantity is added to or subtracted from both sides, that is, if a > b, then 

ia ee Nam te 

pRooF. By the definition of a > b, we have 

a — b =p, a positive number, 

whence er EEC) ip; 

from which, by the definition of “greater than,” 

ie at DN ie At 

Similarly, it may be shown that 

Qa Dec, 
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Corollary 1. Any term may be transposed from one side of an inequality 

to the other side by merely changing its sign. 

In view of Corollary 1, we may transpose every term of an inequality to 

one side. As a consequence we have 

Corollary 2. Every inequality may be reduced to either of the forms 

A >0Oor A <0, where A is some algebraic expression. 

In view of Theorem 6 (Sec. 2.4), the importance of Corollary 2 lies in the 
fact that the solution of any inequality may be reduced to the determination of 
merely the sign (and not the magnitude) of some expression. 

Theorem 2. The sense of an inequality remains unchanged if both sides 
are multiplied or divided by the same positive quantity, that is, if a > b and 
c > 0, then ac > be and alc > bjc. 

PROOF. From a > b, we have 

a — b=p, a positive number. 

Multiplying both sides by c, we have 

ac — bc = pc, a positive number, 

whence ac > be. 

Similarly, it may be shown that 

and 
->-. 
awe 

By a proof similar to that of Theorem 2, we may establish 

Theorem 3. The sense of an inequality is reversed if both sides are 
multiplied or divided by the same negative quantity, that is, if a> b and 
c <0, then ac < be and alc < ble. 

Theorem 4. Jf two inequalities have the same sense, the corresponding 

sides may be added together and the sums will be unequal in the same sense, 
that is, ifa > bandc>d, thna+c>b+d. 

PROOF. From a > b, a — b = p, a positive number. 
From c > d, c — d =q, a positive number. 

Adding, a +c —(b+d)=p+4q, a positive number, 

whence at+ec>b-+d. 

Corollary. If a, > by, dy > by, dg > bs,*++, a, > b,, then 

a4+4+a,t:*'+a,>b,+b6,+b,+°::+5,. 
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Theorem 5. If of three quantities, the first is greater than the second and 
the second is greater than the third, then the first is greater than the third, 
that is, ifa > bandb> ec, thena>c. 

The proof of this theorem is similar to that of Theorem 4 and is left to 
the student as an exercise. 

Theorem 6. Jf two inequalities with positive numbers have the same 
sense, the corresponding sides may be multiplied together, and the products 
will be unequal in the same sense, that is, if a, b, c, and d are all positive and 

a> bandc> d, then ac > bd. 

PROOF. Since c > 0 and a > 3, it follows from Theorem 2 that 

(1) 00 = OC. 

Similarly, since b > 0 and c > d, 

(2) be > bd. 

From (1), (2), and Theorem 5, we have 

ac > bd. 

Corollary 1. Jf all quantities are positive and a, > b,, ay > by, a3 > 
De Der 0,000," 0d. > D,0,0,-" * bz. 

Corollary 2. Jf a and b are both positive, a> b, and n is a positive 

integer, then a” > b”. 
Corollary 3. Jf a and b are both positive, a > b, and n is a positive 

integer, then a’/” > b1/” (principal roots). 
Corollary 4. Jf a and b are both positive, a > b, and n is a positive 

integer, thena-” <b. 

EXERCISES. GROUP 20 

1. Complete the proof of Theorem 1 (Sec. 6.2) by showing that if a > b, 

thena —c >b —c. 

2. Establish Corollary 1 of Theorem 1 (Sec. 6.2). 

3. Establish Corollary 2 of Theorem | (Sec. 6.2). 

4. Complete the proof of Theorem 2 (Sec. 6.2) by showing that if a > b and 

c > 0, then a/c > b/c. 

5. Establish Theorem 3 (Sec. 6.2). 

6. Establish the corollary to Theorem 4 (Sec. 6.2). 

7. Show by means of examples that if a, b, c, and d are all positive and 

a > bandc > d, it does not necessarily follow thata —c > b —d. 

8. Establish Theorem 5 (Sec. 6.2). 

9. Ifa > b,b >c, andc > d, show that a > d. 
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10. If a > bc, c > d, and b > 0, show that a > bd. 

lie ita brand) b= ch show thatial<re! 

12. Establish Corollary 1 of Theorem 6 (Sec. 6.2). 

13. Establish Corollary 2 of Theorem 6 (Sec. 6.2). 

14. Establish Corollary 3 of Theorem 6 (Sec. 6.2). 

15. Establish Corollary 4 of Theorem 6 (Sec. 6.2). 

16. Show by means of examples that the result of Theorem 6 does not 

necessarily follow if a, b, c, and d are not all positive. 

17. Show by means of examples that if a, b, c, and dare all positive and a > b 

and c > d, it does not necessarily follow that a/c > b/d. 

18. If each of two quantities is greater than unity, prove that their product is 

greater than unity. 

19. Using the result of Ex. 18, establish Theorem 6 (Sec. 6.2). 

20. If a and 6 are positive and a > 4, it follows by Corollary 2 of Theorem 6 

(Sec. 6.2) that a? > b?. State and prove the converse of this result. 

6.3. ABSOLUTE INEQUALITIES 

As we have indicated, an absolute inequality is analogous to an identity. 
We establish its validity by an analytic proof, using one or more of the 
fundamental principles discussed in Sec. 6.2. 

The direct proof of an absolute inequality starts with some known 
relation and then proceeds by logical steps to the final form desired. 
Sometimes, however, it is not obvious just what known relation should be 

used at the beginning. Then it may be possible to make an analysis of the 
desired relation by simplifying it until we obtain a known relation. The 

direct proof is then made by reversing the steps of the analysis. This 
procedure is illustrated in 

Example 1. If a and b are unequal positive numbers, show that 

a + b8 > ath + ab?. 

SOLUTION. Since it does not appear obvious where to start, we attempt to 
simplify the desired relation in the following 

ANALYSIS. We first factor the right member and write 

a + b? > ab(a + DB). 

Since a and 4 are both positive, a + b is positive and, by Theorem 2 
(Sec. 6.2), we may divide both sides by a + 6 without changing the sense. 
This gives us 

a* — ab + b? > ab. 
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Transposing ab to the left side (Cor. 1, Theorem 1, Sec. 6.2), we have 

a’ — 2ab+ b? > 0, 

or (a— b> 0. 

Now we know this last relation is true, for, a4 b, whence a — b 4 O and 
(a — b)> > 0. Hence this is the starting relation for our 

PROOF. (a — bP? >0, 

whence a® — 2ab + b? > 0. 

Transposing —ab to the right side (Cor. 1, Theorem 1, Sec. 6.2), we have 

a®* — ab + b? > ab. 

Multiplying both sides by a + b (Theorem 2, Sec. 6.2), we have the desired 
result 

a + b® > ab + ab?. 

For some absolute inequalities, however, an analysis does not readily 
lead to a known relation. In such cases, we may have to experiment and 
try, at least tentatively, some known relations which may possibly lead to 

the desired result. This is illustrated in 

Example 2. If a and b are unequal positive numbers, show that 

a+h+i>ab+at+b. 

SOLUTION. An analysis of the desired inequality does not suggest any 
known relations. However, the three expressions (a — 6)", (a — 1)?, and 

(b — 1)? involve all the terms in the inequality. Now, since a ¢ b, (a — b)? 

is positive. Furthermore, while either a or b may be equal to 1, both 
cannot be equal to | at the same time, fora # b. Hence at least one of the 

expressions (a — 1)? and (6 — 1)* must always be positive, and both are 
always non-negative. Thus, we are justified in taking the sum of these 

three expressions as positive, and we write 

(Gea) aah) at (bs he 0), 

with the expectation that this relation may lead to the desired result. 

Expanding, we have 

a@—2ab+h+a—2a+1+8—264+1>0. 

Collecting terms, 2a” + 2b? + 2 — 2ab — 2a — 2b > 0. 

Dividing by 2 (Theorem 2, Sec. 6.2), @+h+1—ab—a—b>0. 

Transposing (Cor. 1, Theorem 1, Sec. 6.2), ®@ +b2>+1>ab+a+b, 

which is the desired result. 
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EXERCISES. GROUP 21 

1. Prove that the sum of any positive number (except unity) and its reciprocal 

is greater than 2. 

2. If a and 6 are unequal positive numbers, show that 

a+b 2ab 

“Sie ofa +b 

3. If a and 5b are positive and a > b, show that Va>Vb by a method 
independent of Corollary 3 of Theorem 6 (Secon): 

4. If a and b are unequal positive numbers, show that a/b? + bla > lla + 

1/b. 

5. If a and b are unequal positive numbers, show that a + b < a®/b + B?/a. 

6. If a and b are unequal positive numbers, show that a + b > 2Vab. 

a—b a-—b 

a’ + b? a a+b’ 

8. If a, b, and ¢ are all positive numbers, show that (a + b +c)? > a + 

b? + c?. 

9. If a, b, and c are unequal positive numbers, show that a + b? + c? > 

ab +c + be. 

10. If a, 6, and c are unequal positive numbers, show that (a + b +c)? < 

3(a® + b? + c?). 

11. If a, b, and c are unequal positive numbers, show that 

(a + b)\(b + cic + a) > Babe. 

12. If a and 6 are unequal positive numbers, show that (a? + b°)(a + 5) > 

(a? + 5). 

13. If a and 6 are unequal numbers, show that a* + b* > a’b + ab’. 

14. Ifaand b are unequal numbers, show that (a* + b*)(a? + b?) > (a® + 5°). 

15. If a, b, and c are unequal positive numbers, show that 

ab(a + b) + bc(b + c) + ca(c + a) > babe. 

16. If a and b are positive numbers and a > b, show that at — b* < 4q* — 

7. If a and b are positive numbers and a > b, show that 

17. Determine the values of a for which a? + 1 > a? +a. 

18. If a and 5 are positive numbers, determine which is the greater, aT des 
at+b e 

Ce Pay 
©, fh 46 

19. If a, b, c, and d are unequal positive numbers, and if - > - , show that 

a Gl ae G b d 
- >—— > -,. ba ab ey Sch 

20. If a, b, x, and y are unequal positive numbers such that a2 + 62 = 1 and 
a? + y% = 1, show that ax + by <1. 
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21. If a, b, c, x, y, and 2 are unequal positive numbers such that a? + 52 + 
c? = 1 and a? + y? + 2? = 1, show that aw + by + cz <1. 

22. If a, b, and c are unequal positive numbers, show that 2(a? + b? + c3) > 
a’b + Bra + b’e + c*b + ca + ac. Hint: Use the result of Example 1 (Sec. 
623): 

23. If a, 6, and c are unequal positive numbers, show that (a + b — c)? + 
(6 +c —a?+(ce +a —b)? >ab+ be +ca. Hint: Use the result of Ex. 9. 

24. If a, b, c, x, y, and z are unequal positive numbers, show that 

(@ + B? +c*)(a? + y? + 2) > (ax + by + cz)? 

25. If a, b, and ¢ are unequal positive numbers, show that a? + 53 + c? > 

3abc. Hint: Use the result of Ex. 9. 

6.4. CONDITIONAL LINEAR INEQUALITIES 

In this chapter we will consider only conditional inequalities involving 
a single variable, say x. Our problem then is to determine the range of 

values of the variable x for which the inequality holds; this range is called 
the solution of the inequality. If the variable x occurs to only the first 
power, the inequality is said to be /inear. The solution of a linear inequality 
is very simple and is analogous to the solution of the linear equation in one 

variable (Sec. 4.4). 

Example. Solve the linear inequality « + 1 > 3x + 5, and illustrate 

the result graphically. 

SOLUTION. We are to find the values of x for which 

(1) el > 3x + 5. 

As in linear equations, we transpose all terms in x to one side and all 

known terms to the other side. We thus obtain 

—24 > 4. 

Dividing by —2, x< —2. (Theorem 3, Sec. 6.2) 

This is the required solution, which states that for all values of x less than 

—2, the inequality (1) holds. 

For the graphical representation of this result, we transpose all terms of 

(1) to the left side, giving us the equivalent inequality 

(2) —2¢ —4>0. 

We have here our first example of the significance of Corollary 2 of 

Theorem 1 (Sec. 6.2). The inequality (2) now tells us that for all values of x 

less than —2, the linear function —2x — 4 is positive. The graph of this 
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linear function is a straight line (Sec. 3.9) 

and is shown in Fig. 20. We also see 
here that the zero of the function is —2 

and that for all values of x < —2, the 

line lies above the X-axis. 

6.5. CONDITIONAL QUADRATIC 
INEQUALITIES 

In Chapter 5 we considered the solution 
of the quadratic equation in one variable 
or the determination of the zeros of the 
quadratic function. By the solution of 
the conditional quadratic inequality in 
one variable, say x, we mean the deter- 

mination of those values of x for which the inequality holds, that 
is, those values of # for which the quadratic function is not equal to 
zero but is either positive or negative as required by the inequality. 
We have seen that, when possible, a quadratic equation is solved by 

factoring. Similarly, for a quadratic inequality, we factor the quadratic 
function, if possible, and determine its zeros which, although not solutions 
of the inequality, are nevertheless critical values of the solution, as we shall 
now explain. 

Consider first the linear function in one variable, x — r, where r, a 

constant, is the zero of the function. If we assign x a value just slightly 
greater than r, the function is positive; if x is assigned a value slightly less 
than r, the function is negative. In other words, if the value of x deviates 
the slightest from above to below r, the sign of the function changes. For 
this reason r is appropriately called the critical value of the function x — r. 
Similarly, by obtaining the two linear factors of a quadratic function, we 
may obtain its two critical values. 

The first step in the solution of a quadratic inequality is to transpose, if 

necessary, all terms to one side of the inequality giving us, say, the relation 

(1) ax? + br +c>0. 

Figure 20 

The advantage in this step is that we are now not concerned with the 

magnitude of the left member of (1) but only with its sign (Cor. 2, Theorem 

1, Sec. 6.2). Factoring this left member (relation (3), Sec. 5.5), we have 

(2) a(x — r,)(z — r2) > 0, 

where r, and r, are the critical values. 
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First, assume that 2 is greater than r,, making the factor x — ry positive. 
If this same value of x also makes the other factor « — r, positive, their 
product (together with a > 0) is positive, the inequality (2) is satisfied; 
our assumption is correct; and x > r, is a solution of the inequality (1). 
If, however, this value of x makes x — r, negative, the product is negative; 
the inequality is not satisfied; our assumption is false; and a solution of 
the inequality is now x < ry. It is easily verified that we obtain the same 
results by initially assuming that x is smaller than r,. We go through a 
similar argument for the other critical value r,. The resulting two in- 
equalities constitute the solution of the inequality (1). We will illustrate 
this procedure by a concrete numerical example. 

Example 1. Solve the inequality 

3a? — 27 —2 < 27? — 3x 4+ 4, 

and illustrate the result graphically. 

SOLUTION. We first transpose all terms to one side, say the left, and 
obtain the equivalent inequality 

e+xex—6<0. 

Next, factoring the left member, we have 

(x — 2)(x + 3) <0, 

and the critical values are 2 and —3. 
First, assume that x > 2. Then for values of x slightly greater than 2, 

both factors are positive and their product is positive, a result contrary to 
the requirement of the inequality. Hence our assumption that x > 2 is 

false; the correct solution is x < 2. Note that if we had assumed initially 
that « < 2, then for values of x slightly less than 2, the first factor is 
negative; the second factor is positive; their product is negative; and the 

inequality is satisfied. 
Similarly, assume that 2 > —3. Then for values of x slightly greater 

than —3, the first factor is negative; the second factor is positive; their 

product is negative; the inequality is satisfied; and the solution isw > —3. 

Hence the complete solution is x < 2, > —3, that is, the given in- 

equality holds for all values of less than 2 but greater than —3. This 

solution may be written in one statement as 2 > « > —3, which means 

all values of « between —3 and 2. This range of values is conveniently 

shown graphically in Fig. 21 by the linear coordinate system (Sec. 3.7). 

The quadratic function «? + x — 6 is shown graphically in Fig. 22 in 

accordance with Sec. 5.8. This graph shows the zeros of the function as 

x = 2, —3; it also shows that the graph is above the X-axis for values 
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—> 

x 

= fe al ie 
ge 5m, OME A (-3,.0) @,0 * 

Figure 21 Figure 22 

of x > 2 and < —3, and that the graph is below the X-axis for values of 

x between —3 and 2. 

This method of solving an inequality by means of critical values may be 
used for any algebraic expression which may be factored into real linear 

factors. This is illustrated in 

Example 2. Solve the inequality 

(x + 1)\(e — 2)(a — 3) > 0. 

SOLUTION. The critical values are —1, 2, and 3. As in Example 1, we 

test each one by assuming values of x slightly greater than the critical 

value. We thus obtain the resulting signs of the factors, the sign of the 

product, and the resulting solution, as shown in the following table. 

Assume Signs of Factors Product Solution 

x > —] + -—- = >0 x> —l 

in > DD 4a = <0 GD) 

Lae IP PSF >0 gps 3 

The complete solution may therefore be written 

== y= 2! Apes: 8. 

walla | es These ranges of values are shown graphi- 
a -1 cally in Fig. 23. 

Figure 23 NoTE 1. The solution may also be con- 

veniently effected by first plotting the 
critical values, as in Fig. 23, and then testing the given inequality for possible 

values of « in each of the four ranges or intervals shown: « < —1, —1 <a@ <2, 

2 <x <3,x > 3. The student should obtain the solution by this method. He 
should also solve Example | by this method. 
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We next consider the case of an inequality involving a quadratic function 
which cannot be factored into real linear factors. Although we ordinarily 
confine factoring to the field of rational numbers (Sec. 2.8), we do include 
irrational numbers for inequalities because they are real numbers. Thus, 
it is easy to see that the solution of the inequality x2 — 5 > 0 is given by 
the relations x > v5, a<—vV5. We will therefore now confine our 
attention to the quadratic function which is irreducible in the field of real 
numbers. 

Let the quadratic function ax? + bx + c, a0 have a discriminant 

b® — 4ac < 0 so that the function is irreducible in the field of real numbers 
(Theorem 2, Sec. 5.5). By completing the square in x, we obtain (relation 
he ocCa 4?) 

: | a b? 
az --— ba +c =ala + —) +c — — 

2a 

or 

2 = 
(3) at tbe tema(zt 4 ome 

ae 
In the right member of (3), (: + 2| is non-negative for all values of x. 

a 
Also, since b? — 4ac <0, it follows that 4ac — b> > 0, and hence 

eee he 

‘aslo has the same sign as a. Accordingly, for all values of ~, the right 

member of (3) is positive if a > 0 and is negative if a <0. We record 

these results as 

Theorem 7. Jf the quadratic function 

ax? + bx + ¢, a0 

has a negative discriminant b? — 4ac, then for all values of x the function is 

positive if a > 0 and is negative ifa < 0. 

NOTE 2. This theorem is very useful whenever one or more factors of an 

inequality are irreducible quadratic functions. Each such factor may be removed 

without any change except that, for a negative function, the sense must be 

reversed. 

Example 3. Solve the inequalities 

(a) a? + 24+5>0, 

(b) 2a — 2? —2 <0, 

and illustrate the results graphically. 

SOLUTION. Since both functions have negative discriminants, it follows 

from Theorem 7 that with a > 0 in function (a), that function is positive 
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for all values of x; and with a < 0 in function (b), that function is negative 

for all values of a. We can also see this by completing the square. Thus, 
w+ 2e+5=(¢+ 1)2?+4> 0 for all a; 

2a — a2? —2 = —(2? — 2x + 1) —1 = —(@ — 1)? — 1 < 0 for all z. 

Hence both inequalities are satisfied for all values of x. If the in- 
equality signs were reversed, neither in- 
equality would have a solution. The 

(a) graphs of the two functions are shown 

in Fig. 24. 

Ve 

Finally, we consider a typé of con- 

ditional inequality which, although not 
a quadratic, may be solved by critical 
values. 

— 4s Example 4. Solve the inequality 

3 1 
= 

wD wigan § 

(b) SOLUTION. If the inequality sign were 

replaced by the equality sign, we would 
Figure 24 have a fractional equation whose sol- 

ution would be effected by first mul- 

tiplying both sides by the L.C.D. (4 + 2)(x — 1). The student may 
be tempted to do the same thing for this inequality, but if he does, he 
will run into difficulties. This is due to the fact that when we do not know 
the sign of a variable multiplier, we do not know whether we can retain the 

sense of the inequality or not (Theorem 3, Sec. 6.2). Hence we must never 

multiply or divide both sides of an inequality by a variable factor unless it 
retains the same sign throughout its entire range of values (Theorem 7). 

Our first step, as usual, is to transpose all terms to one side of the inequa- 
lity, whence 

3 1 

x+2 a—1 

Our next step is not to multiply by the L.C.D. but to combine both 
fractions over their L.C.D. This gives us 

a 
ety 
(x + 2(@ = 1) 

The critical values are $8, —2, and 1. For each critical value, we assume x to 

be slightly greater or less than this value, and then observe the effects on the 

e-.0, 
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signs of the numerator and denominator and hence the sign of the fraction. 
The results are shown below in tabular form. 

Signs of Numerator Sign of 
Assume and Denominator Fraction Solution 

nae + . 5 
or = —____ Ss we 

2 + + SS) 

z> —2 ae. >0 x> —2 

2 | ree 7. in <0 oe | 

The complete solution is therefore « > 8, -2 <a <1. 
The student should show these ranges of values graphically. He should 

also solve the inequality by the method described in Note 1 of Example 2. 

EXERCISES. GROUP 22 

In each of Exs. 1-6, solve the linear inequality and illustrate the result 

graphically. 

Lea — 5 3 — a, Deel Gace 2 

3. 2a +1 < 3x — 1. 4. 4~ +10 > 4 — 22. 

x 
5.2 -—%>2x +4. caine Las A no 

In each of Exs. 7-10, determine the values of x for which the given quadratic 

function is positive, negative, and zero. Illustrate the results graphically. 

7.2 +24 —2?, 8. x? — 6x + 8. 

9, a + 42 + 6. 10. 4a — a? — 5, 

In each of Exs. 11-20, solve the given inequality and illustrate the result 

graphically. 

11. 2% —a« —6>0. 12. a2 +57 +4 <0. 

13. 52? + 82 — 3 > a? — 32. 145 2227-- 5a — 1 = 2a 1. 

15. x? + 12% + 60 > 10 — 22. 16. 12% + x? — 30 > 2a7 +7. 

17. 222 = 4¢ — 3 < 3a? + 2. 1. a2 = Ge 295 < ili, 

19, 2? + 8a — 11 < 277 +5. 20. a? — 8& + 8 > 4 — 42. 

In each of Exs. 21-24, determine the values of x for which the given radical 

represents a real number. 

7) ey 22. Vx + 16. 

23. Vx — 16. 24. Va® +” — 12. 

In each of Exs. 25-26, determine the values of k for which the roots of the 

given quadratic equation are real and unequal. 

25. 4a2 —kx +1 =0. 26. ku? + 2kx —5 =0. 



146 Inequalities Ch. 6 

In each of Exs. 27-28, determine the values of k for which the roots of the 

given quadratic equation are complex. 

Dil w+ ke —k =0. 28. (k + 1)x? — 2kxw +1 =0. 

In each of Exs. 29-30, determine the values of k for which the given system 

will have two distinct real solutions. 

29. x«—2y+k =0, 

xe? + y2 = 5, 

30. x+2y +k =0, 

y* —2e +6y +9 =0. 

In each of Exs. 31-50, solve the given inequality. 

Bile 

33: 

sbi: 

Sik. 

39% 

41. 

43. 

45. 

47. 

49. 

x(x + 2)(a — 1) > 0. 

aw? —2n? —4 +2 <0. 

(w@ + 2)(v@ — 1)(@ — 4) < 0. 

(v2 +a + 1/(@ — 1) > 0. 

(x + 2x — 3)(3x —4 —2?) > 0. 

x+2 

x— | 

gp ap 8 

x —4 

3 1 

ES Eo 
x x — | 

z+ oa ao. 

oe? +e + I 

ma — Ie — 2) ~ 

<0. 

Sel 

0. 

aye. 

34. 

36. 

38. 

40. 

42. 

44. 

46. 

48. 

50. 

(x + 1)(2e — 1)(@ + 3) < 0. 

ve + 24 — 47 —4 > 0, 

(w + 2a — 1)?(a — 4) < 0. 

(a? + 2x + 4)(v? — w@ — 2) <0. 

(w — 2 — x)\(x? + 2x — 8) <0. 

ae ae 

z—4~ 
2 “ 

Rag Sra 

x — 4 

1 —2 
6 5 

0. 

S27), 

6.6. OTHER CONDITIONAL INEQUALITIES 

In this section we shall discuss several additional types of conditional 
inequalities. We will first consider an inequality which involves the 
absolute value (Sec. 2.4) of an expression, for example, the inequality 
|e — 1| < 1. Such inequalities arise in connection with the determination 
of what is known as the interval of convergence of a power series. 

Example 1. Solve the inequality 

ja— 1] <1. 

SOLUTION. The given inequality means precisely that 

= leeve— be, 

The solution of the inequality 

—-l<a2— 1] 

is readily found to be a > 0. 
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Similarly, the solution of the inequality 

o— P< | 
is found to be x < 2. 

Hence the solution of the given inequality is 0 < # < 2. 

In the next example we consider one of the fundamental properties of 
absolute values. 

Example 2. If a and bd are any real numbers, prove that 

la + b| < Jal + |]. 

SOLUTION. This inequality may, of course, be established by considering 
the various cases which arise: a and b both positive or both negative; a 

positive and b negative, and vice versa; and the various combinations 
where either a or b or both are zero. We will, however, give another proof. 

Assume, contrary to the required inequality, that 

la + b| > jal + |B]. 

Squaring both sides (Cor. 2, Theorem 6, Sec. 6.2), we have 

a® + 2ab + b?> a*® + lal -|b| + b? 

whence ab > |a| - |d|, 

which is not true for any values of aand 6. This contradiction shows that 
our assumption is false, and the required inequality is established. 

We next consider inequalities involving radicals. For some of these 
inequalities, care must be exercised in connection with signs. We must 
also remember that we are always dealing with real numbers. 

Example 3. Solve the inequality 

Ve-1+2>0. 
SOLUTION. In view of our experience with radical equations (Art. 46), 

we might isolate the radical and write 

Vis) 

But we cannot square now, for both sides are not positive (Cor. 2, Theorem 

OEScC10.2): 

If we square the original inequality as it stands, we have 

Pe 4 ee Ae 0 

or CEE Bie AN geal et0) 

and we are in the same difficulty as before. 
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We now examine the original inequality more critically and observe that 

since the term 2 is already greater than zero, the only requirement for the 

radical Vx — 1 is that it represent a real non-negative number. This 

means that x — 1 >0 or 2 > 1, which is therefore the solution. 

EXERCISES. GROUP 23 

In each of Exs. 1-8, solve the given inequality. 

La fel 2s 2 eee S. 3. jw — 2) <1. Cd a we pie oa 

3 rane ewes eae 
9. By considering the various cases, establish the inequality of Example 2 

(Sec. 6.6). 

10. If a and 5 are any real numbers, prove that |a — b| < |a| + |b}. 

11. If a and 6 are any real numbers, prove that |a + b| = |a| — |d|. 

By. (HP S| Sle tH =< le << 

12. If a and 6 are any real numbers, prove that |a — b| = |a| — |d]. 

In each of Exs. 13-22, solve the given inequality. 

13. Veli+1 > 2. 14. V1 a > 2, 

iiet, Ye oee Thee iy 16. Ve —-2+1>0. 

iz: al ae 18. AL 9 
Va +1 4/ pai 

19. Vo +5 4+ Va >5. 20. Ve +4 — Vx —1>1. 
OS ee ere yl a 22. Ve +7 — Vx —1>2. 

23. If a and b are unequal positive numbers, show that aes > Vab. 

24. If a and b are unequal positive numbers, show that Vab > a : 

25. If a and b are positive numbers, show that Ve+b<atb. 

26. If a and b are positive numbers, show that Va + b < Va + Vb. 

In each of Exs. 27-30, verify the given inequality without using a table of 
square roots. 

OTN detent 10) 28. V0 6 = V5, 

9 V8 V6 2) eV 11, 30° 43 = V7 = V5 =v 10 
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Mathematical induction. 

The binomial theorem 

7.1. INTRODUCTION 

As its title indicates, this chapter considers two distinct topics. The 
reason is that the binomial theorem is established by a method of proof 
known as mathematical induction or complete induction. The student must 

not infer from this that mathematical induction is merely a step in proving 
the binomial theorem. We shall see that there are a great variety of 
relations which may be proved by mathematical induction. In fact, we 
shall use mathematical induction in the next chapter to establish an 

important relation known as De Moivre’s Theorem. 

7.2. THE NATURE OF MATHEMATICAL INDUCTION 

Instead of giving a formal definition of mathematical induction at the 
start, we shall discuss a very simple example to illustrate the logic under- 

lying this method of proof. 
Let us, therefore, consider the sum S,, of the first n odd tintegers,hat is, 

Slee (2p — <1), 

where 2 — 1 represents the mth term in this sum. Initially, we write out 

the actual sum for the first four cases. Thus, 

n=l, S; = 1. 

a. Seed Bete 

n = 3, S,=14+34+5=9=37, 

14+34+54+7=1=4#. 

149 

n= 4, S4 
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We have here indicated the sum for each case as the square of the number 

of terms in order to point up the obvious inference that the sum of m terms 
is probably equal to n®. Note that we have not proved this relation for the 
sum of any number of terms; we have merely shown it to be true for values 

of n up to 4. 
The method of mathematical induction now introduces the ingenious 

device of assuming that the relation is true for some one value of n, say k, 
and then attempting to show that, on the basis of this assumption, the 
relation is also true for k + 1, the next higher value of n. If this step is 
accomplished, the argument for completing the proof proceeds as follows. 
Since the relation has been shown to be true for n = 1, it follows.from the 

preceding step that it is true for n = 2. Similarly, if it is true for n = 2, it 

is true for n = 3, and so on for every positive integral value of n. 
Let us now complete the proof, by mathematical induction, of the rela- 

tion 

(1) ap dae Sapo oo Se 1) cee 

Assume that (1) is true for n = k, that is, 

(2) Eee toe ee lie rie 
is an assumed equality. 
We now add the (kK + 1)th term, 2(k + 1) — 1 = 2k + 1, to both sides 

of (2). We thus have the equality 

(3) 14+34+54+-°-+Qk-)D4+QkK4+)=h4+2k4+1 

= (k + 1). 

Now (3), which is true if and only if (2) is true, is a verification of relation 

(1) form =k-+ 1. We have thus proved that if relation (1) is true for 

n=k, it is true form =k-+ 1. Then the argument proceeds as above. 
Since relation (1) has been shown io be true for n = 1, it follows from (2) 

and (3) that it is true for m = 2. Similarly, if (1) is true for n = 2, it is true 

for n = 3, and so on for all positive integral values of n. 
For convenience and future reference we now give a formal statement of 

Mathematical Induction 

Mathematical induction or complete induction is a form of reasoning 
which may be used to prove relations or statements depending upon some 

variable, say n, which assumes only positive integral values. The method 

of mathematical induction for proving a particular relation consists 
essentially of the following three steps: 

1. The relation must be verified for » = 1 or the first value of n for 

which the relation is to hold. 
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2. Based upon the assumption that the relation is true for some value 
of n, say k, the relation must be shown to be true form =k + 1. 

3. The relation having been shown to be true for = | in step 1, it 
follows from step 2 that it is true for n = 2. Similarly, if the relation is 
true for n = 2, it is true for n = 3, and so on for all positive integral values 
of n. 

It must be emphasized that both steps 1 and 2 are essential for a valid 
proof. Step 3, of course, is a logical consequence of steps | and 2. 

NOTE. We give here two illustrations of how a relation is shown to be invalid 

because it does not satisfy both steps 1 and 2. 
Consider first the relation 

A eS RS) tas (270— sl) eat 

This relation is obviously true for n = | and hence satisfies step 1. But it is easy 
to show that it does not satisfy step 2. Accordingly, relation (4) does not hold 

for all positive integral values of n. 

Consider next the relation 

(5) 143454+-:-4+Qn-1 =r +1. 

It may be easily shown that this relation satisfies step 2. But it does not satisfy 
step 1 and hence does not hold for any positive integral value of n. 

7.3. EXAMPLES OF MATHEMATICAL INDUCTION 

In this article we give several illustrative examples and a comprehensive 
list of exercises in mathematical induction. 

Example 1. By the method of mathematical induction, prove the 

relation 

(1) 124 224 324 ---4 n27 =tn(n+ 1IQn+ 1), 

where 7 is any positive integer. 

SOLUTION. We will carry out, in order, each of the three steps outlined in 

Sec. 7.2. 
1. Substitute n = 1 in relation (1). We obtain 

(ee 
OE eee 

1 Bice De 2 Sie, 

Hence step | is satisfied. aul 

2. Assume (1) is true for n = k, that is, assume the following relation is 

hue. 

(2) 12+ 22 + 324 +++ 4+ kh? = $k(k + 12k + 1). 
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Add the (k + 1)th term, (kK + 1)?, to both sides of (2). This gives us the 

equality 

(3) 12+ 224 324---+hk? + (k+ 1» 
= $k + DQk+ 1+ + IP. 

We must now show that the right member of (3) is identical with the 
right member of (1) when 7 is replaced by k + 1. Thus, first factoring out 

act 
, we have 

Bk(k + DQk +1) +(e + 
= _* 1 kk + 1) + 6k + 1)] 

Larrea re HF =(k + Dk + 3) 

isl 
[(k + 1) + 1][2(k + 1) + 1]. 

This last ae is identical with the right member of (1) when v is 
replaced by k + 1. We have therefore proved that if (1) is true for n = k, 
it is also true for n = k + 1, and step 2 is satisfied. 

3. Since (1) is true for n = 1 by step 1, it follows from step 2 that (1) is 
true for nm = 2. For the same reason, if it is true for n = 2, it is true for 

n = 3, and so on for all positive integral values of n. 
This completes the proof. 

Example 2. By the method of mathematical induction, prove that 
x” — y?" is exactly divisible by x + y for every positive integral value of n. 

SOLUTION. 1. For n = 1, we have (a? — y?)/(x + y) = x — y, and step 

1 is satisfied. 
2. We are now to prove that if #?* — y* is exactly divisible by « + y, 

then a?**2 — y*t is also exactly divisible by x + y. There are several 
ways of doing this. We will use the very natural method of actually 
dividing a"? — y?**2 by x + y. By ordinary algebraic division (Sec. 2.7), 
we have 

2k +2 2k+2 2k, 2 Ik+2 
x i} : , es —1 plea wae Bek Ea | aoky Y Y¥ 

BBs 0 Cy 

where the division has been carried out just far enough to permit the use of 

the assumption that «?* — y?* is exactly divisible by « + y. Thus, for the 
remainder we have 

a2 ako y = yy oa es y(t Wen). 
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so that, in view of our assumption, the remainder is exactly divisible by 
« + y, and hence the entire division of 2?"+® — y2"#2 by x + y is exact. 
Therefore, step 2 is satisfied. 

3. Here we repeat the usual verbal statements to complete the proof for 
all positive integral values of n. 

NoTE. Many of the difficulties encountered in step 2 of a proof by mathematical 
induction will be avoided if the result of substituting k + 1 for nisso manipulated 
as to permit the use of the assumption for n = k. The student should observe 
this fact in the preceding example. 

EXERCISES. GROUP 24 

1. Show that relation (4) of Sec. 7.2 does not satisfy step 2 of the method of 

mathematical induction. 

2. Show that relation (5) of Sec. 7.2 satisfies step 2 of the method of mathe- 

matical induction. 

3. In Example 2 of Sec. 7.3, carry out step 2 by using the identity 
g2kt2 — yPK+2 = yy! — y2k) 4 y2k(y2 — 2, 

4. Prove that x?”~1 + y?"~1 is exactly divisible by x + y for every positive 
integral value of n, carrying out step 2 as in Example 2 of Sec. 7.3. 

5. Carry out step 2 of Ex. 4 by using the identity 

ged 4p yPR+T xs 92(q2k—-1 4 yl) — yPhA(g? — y2), 

6. Prove that x” — y” is exactly divisible by x — y for every positive integral 

value of , carrying out step 2 as in Example 2 of Sec. 7.3. 

7. Carry out step 2 of Ex. 6 by using the identity 

gktl — yktl = a(ak — y*) + ya — y). 

In each of Exs. 8-39, by the method of mathematical induction, prove the 

given relation or statement, 7 being a positive integer. 

n(n + 1) 
Sy 

924+44+6+-°::+2n =n(n + 1). 

eS oa Aaa oe nila an aL 

n 

10.1 4+4+47+4-+: + Gn —2) =5 Ga — J). 

11.3 +64+9+---+3n = 3nr + 1). 

12.5+10 +15 +--: +5n =3n(n + 1). . 

13.a+(a+d+fa@ 2d) tla Pe dl = a i aI, 

14.2 +22? +28 +--- +2" = 2(2” — 1). 

15mg stats 8 33" — 1). 

(6p tp See 4S) = 5" — 1). 



28. 

29: 

30. 

aM 

BPX. 

33: 

34. 

38). 

36. 

3h 

38, 

.atartart+::++ar= 

. 1 + 33 +58 +--+ + Qn — 138 = 1(2r? — 1). 

Mathematical Induction. The Binomial Theorem Ch. 7 

1 1 1 1 
Vt pi ae Gielen pete 

oy OE 

all — r”) 

1-—r- 

n 

EL Pei ena oO ew Ween NE 

n2 

ie Aaah aed Para aa Ue eek 

n 
2 

2 Ses ee nese (eet 1)? 4 

n n 

14346490 +5@ 4) =7@+ D429. 

nh 

15242-34394 $00 Ean +1) = 3 (e+ 1M + 2). 

n 
PS eas Se en ee) re Ee Ber 

6 

n 

oe eae Oe a Teac crer eG 4) =, ee teenage 

W268 42/6. 4843 cA Se a teler e) 

2 ; (n + 1)(n + 2) + 3). 

1 1 1 1 2 
(ooo rae nan+l n+1 

1 1 1 1 2 
13 ei Soi aie Ciena eee 

i 1 1 1 nn 5) 
The 264 355° © neo ama aes 

1-2 42-2 43-234-+- 47-2" =(n —1)2"4 42, 
n 

1 U2 38 3 52 Ge at nin al) =o (ata Orie ere 

1>3 4°93 + 3% +5 39 423 + (2% — 1)3" = Gr —1)3" p38, 

If a and b are positive numbers such that a > b, then a” > 6", 

2" — 1 is divisible by 15. 

2?” + 5 is divisible by 3. 

3°” + 7 is divisible by 8. 

gn — y” 

= gr-l ae ery ese ao of oy Jk pe 

w—y 
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an - yn 

x+y 

40. Establish Theorem 12 of Sec. 2.6 by the method of mathematical induction. 

= grt — gr-By 4 gyrBy2 _ ... — gpyn2 4 yn odd, 

7.4. THE BINOMIAL THEOREM 

The binomial theorem is essentially a formula whereby we may write out 
each term in the expansion of a binomial raised to any positive integral 
power. To obtain some idea as to the formation of such an expansion for 
(a + b)", where n is a positive integer, we write out the expansion for the 
first four values of n. Thus, by actual multiplication, we have 

(a+b) =a+b, 

(a + 6)? = a? + 2ab 4+ B?, 

(a+ bf? = @ + 3a*b + 3ab? + B', 

(a + b)* = at + 4a*b + 6a?b? + 4ab? + bt. 

We now observe that each expansion has the following characteristics: 

1. The number of terms is n + 1, one more than the exponent n of the 
binomial. 

2. The exponent of a in the first term is m and decreases by 1 in each 

succeeding term. 
3. The quantity b appears initially in the second term with the exponent 

1, and this exponent increases by 1 in each succeeding term. This exponent 
is always | less than the number of the term. 

4. The sum of the exponents of a and b in any term is always equal to n. 
5. The coefficients of a and b exhibit a certain type of symmetry, namely, 

the coefficients of terms equidistant from the ends are the same. 

6. The coefficient of the first term is unity and that of the second term 

is 7. 
7. If, in any term, the coefficient is multiplied by the exponent of a and 

this product is divided by the exponent of b increased by 1, the result is the 

coefficient of the next term. 

NOTE 1. The student will readily see the first six characteristics, but the 

seventh may not be so obvious. Since this is very important in determining 

the coefficients, we illustrate the process for the expansion of (a + b)*. Thus the 

coefficient of the third term is obtained from the second term as follows. The 

coefficient 4 of the second term is multiplied by the exponent 3 of a and this 
4x3 

product is divided by the exponent 1 of b increased by 1. That is, cates 6, 
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the coefficient of the third term. Similarly, from this coefficient we have 

Onxy2 

24+1 

Before we attempt to write out the form of the general expansion of 

(a + b)”, it will be convenient to have the following 

= 4, the coefficient of the fourth term, and so on. 

Definition. By the symbol n!, called factorial n, we mean the product 

of all the consecutive positive integers from 1 to n. That is, 

(1) (58 We He SS 

Thus, 41=1-2-:3-4= 24. 

For completeness, it is often useful to have a value for 0! which is not 
defined by relation (1) where n is a positive integer. Hence we must have 
a separate definition for 0! which is motivated as follows. From (1) we 
have 
(2) n! = n(n — 1)! 

From relation (2), for n = 1, we have 

1! = 1(0)! 

Hence, for this relation to hold, we make the special definition 

O!=1. 

NOTE 2. Factorial n is also frequently denoted by the symbol |x. We shall, 
however, use the symbol 7!. 

If we now assume that, for any positive integral value of n, the expansion 
of (a + b)” has the same characteristics that we observed for n = 1, 2, 3, 

4, then we may write 

(a = by” =q"+ n a"™—1b ui n(n rank) qa” 2p Bs n(n = 1)(n is 2) a"~3p3 

1 ys Ie Tie 

An = De (mr 2) yee 
mp Ns —“"g prt nage n 

i 35 as Ges se 

which, in view of the definition of n!, may be written 

(3)... (@ +b)” = a” + na™ 1b + anew Gar bs 

2 n(n — 1)(n — 2) qn-3p3 

3! 

ome eal n= I) (erat 2) qn—ttipr-1 

(r — 1)! 
+-:++ 5”, 
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where the rth term, EUS ae (iret ir) a 

the general term. Cork 
The relation (3) is called the binomial theorem for positive integral 

exponents. It has been verified for n = 1,2,3,4. The question now 
arises. Does this relation hold for all positive integral values of n? The 
answer is “‘yes”’ and is proved by mathematical induction as shown in the 
next article. 

n—rr1p'-1 is also known as 

7.5. PROOF OF THE BINOMIAL THEOREM 

For convenience, we rewrite the binomial theorem, including the 

(r — 1)th term as well as the rth term. Thus, 

(1) (a + b)” =a” + na""*b+ “ a” *p2 +--+. 

au nh 7 ae ae Bags) qn tepr-2 

tia=s2)! 

— n(n = "3 iat a tak 2) qn ttipr-1 

fet) % 

++++-+nab""* + b”. 

We will establish the validity of relation (1) for all positive integral 
values of n by the method of mathematical induction. In the previous 
section we verified (1) for n = 1 and have thus completed step 1 of the 

proof (Sec. 7.2). 
In accordance with step 2 we assume that (1) holds for n = k, giving us 

the assumed equality 

Q) @t baat t katt +> 
26 k(k Zz 1) iy (k ac fone 3) qk-Tt2pr-2 

(r — 2)! 

gue ice Ale Ula os aie 
(r — 1)! 

See oee kabine a Oe 

We now multiply both sides of (2) by a + 6. We obtain (a + 5)**1 on the 
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left side. In the next two lines we write, in order, the product of the right 

side of (2) by a and then by b. 

(3) 

attl a kth 40+ 4 LU ieee Meare Nace cee gt—rtapr-d wwe ab*, 

(r — 1)! 

(4) 

ah eee + k(k — 1s (K=9 +3) e-rtapr-1 oboe vs kab*® + pert, 

(r — 2)! 

Adding (3) and (4), we have for the right member of (a + b+", 

a®t1 4 (k + 1)a*b 

k(k—1)-::(k—r+2), kk—1):::(kK—rt Nar 
(r— 1)! (r — 2)! 

— eee + (k+ 1)ab* + peti, 

The coefficient of the rth term in this last expansion may be simplified as 

follows: 

Kk = t)(kK—r+2), k= 1-1 +3) 

al 

(r—1)! @ —2)! 
_kk—-1-(kK—r+3), k(k—1)++-(kK—r+3) 

re (r—D! perage! Calera ee Sear be 
2 ee) eee one 

(r— 1)! 

se AME A) SUES) eet ee eet ele 
(r—D}! (r—1)! 

Hence we may finally write 

(5) (a + bjt? = g**1 4 (k + 1)a*b 

oat (kK + a he ac ret 3) qt—tt2pr-1 

r— 1)! 

+ Se + (k dk 1)ab*® + peti. 

Comparing (1) and (5), and particularly the rth terms, we see that (5) is 
precisely the result obtained by replacing n by kK + 1 in (1). Hence we have 
shown that if the binomial theorem (1) is true for n = k, it is also true for 
n=k-+ 1. We have thus completed step 2. 

Then, by the usual argument of step 3, it follows from the above results 
that the binomial theorem (1) holds for all positive integral values of n. 

This completes the proof. 

+ 
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NoTE |. It must be emphasized that we have proved the binomial theorem 
only for positive integral values of the exponent. It is shown by advanced 
methods that the binomial expansion of (a + 6)" holds also for fractional and 
negative values of n provided that the absolute value of b/a is less than unity. 
Under these conditions the number of terms is unlimited, that is, the expansion 
continues indefinitely and we have what is termed an infinite series. 

NOTE 2. In the fifth characteristic of the binomial expansion (Sec. 7.4), we 

noted a certain type of symmetry in the coefficients of the terms. This symmetry 
is clearly shown in the following triangular array known as Pascal’s triangle, 
which gives the coefficients of the terms in the expansion of (a + b)" for values 

of n as indicated. These coefficients are known as the binomial coefficients. 

b= @ 1 

fas 1 1 

a 1 2 1 

fi) 1 3 3 1 

eo 1 4 6 4 1 

p=s 1 5 10 10 5 1 

In Pascal’s triangle we observe that the end elements are all unity, for 
the binomial coefficients of the first and last terms are always unity. Each 
interior element may be obtained as the sum of the two elements in the 
row immediately above and to the left and right of that element. Thus for 
n = 4, the second binomial coefficient 4 is the sum of the elements 1 and 3 

of the preceding row and, respectively, to the left and right of 4; similarly, 
the third binomial coefficient 6 is obtained as the sum of the elements 3 and 
3 of the preceding row, and so on. This relation among the binomial 

coefficients will be proved in a later chapter on the subject of permutations 

and combinations. 

We will now illustrate the binomial theorem by several examples. 

Example 1. Expand (a + 25)° by the binomial theorem. 

SOLUTION. We start by writing the first term a° and the coefficient 5 of 

the second term, which is a4(2b). From this point on we can readily write 

out all the succeeding terms together with their binomial coefficients in 

accordance with the characteristics of the binomial expansion as noted in 

Sec. 7.4. Thus, 

5-4 
(a + 2b)® = a? + 5a*(2b) + ae a?(2b)? 

A a a®(2b)° + a a(2b)* + a (2b) 

= a® + 5a4(2b) + 10a3(2b)? + 10a°(2b)® + Sa(2b)* + (2b)°. 
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Note that we have always kept the term 26 in parentheses so as not to 

interfere with the correct formation of the binomial coefficients. Now we 

can expand the powers of 2b and obtain the final form: 

(a + 2b)> = a® + 10a*b + 40a3b2 + 80ab? + 80ab4 + 325%. 

2d) ae : 
Example 2. Expand |— — - by the binomial theorem. 

x 

SOLUTION. In this expansion it is desirable to enclose both terms in 
parentheses since we are now concerned not only with the correct forma- 
tion of the binomial coefficients but also with the final exponents and sign 
of the individual terms. We therefore write out the expansion in steps as 

follows: 

es Efe (af safl-) «20-2 gt Da ae x 2a 2 \a 2a 

62(20)(_2) , 6:1(_2y 
us 3 \a 2a a 4 2a 

_ 16a 80h | cdot ot 2a oh at 
lect ae 24 xt 4a? eo) Sa on 

16a* = 16a? xt x8 
Se et , 

x8 x + ire Tage te 

7.6. THE GENERAL TERM 

We have already noted (Sec. 7.4) that in the binomial expansion of 

(a + 5)", 

(1) the rth term = MB)" 0 PF 2) pa rtapeoa 
(r — 1)! 

and is called the general term. It is a convenient formula for finding any 
term in a binomial expansion without finding the preceding terms. It is 
worth noting that the coefficient in (1) has the same number of factors in 
both numerator and denominator, namely, (r — 1)! factors. 

It follows from (1) that the term containing 5” is the (r + 1)th term and 
that 

(2) the (r + 1)th term = See CoD e 

r! 

which is often called the general term rather than the form (1). While 
either of these forms may be used to obtain a particular term in a binomial 
expansion, we will use form (1) at present. Later we will have occasion to 
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use form (2) when we consider the binomial coefficients in terms of com- 
binations. 

Example 1. Find the fourth term in the expansion of (a + 26). 

SOLUTION. Using form (1) above, we have 

2453 
Tyg 2b)? = 100%(8b%) = 80aD*. 4th term of (a + 2b)? = 

(See Example 1 of Sec. 7.5.) 
9 

Example 2. In the expansion of (22% _ =) , find the term involving «14, 

SOLUTION. This problem differs from the preceding one in that we do 
not know the number of the required term. Hence, let r represent the 
number of the term. In accordance with form (1), the rth term, aside from 

. x r—1 

its coefficient, will involve (2ane-te-n( — a so that the exponent of x 

in this term is 2110 —r) +r —1=20—2r+r—1= —r+19. Since 

we are concerned with an exponent of x equal to 14, we must have 
—r-+ 19 = 14, whence r = 5. That is, the required term is the 

9 $53 6 gfe 4 4,4 
Sth term of (22° — ) = lees dls 2x ( - 126(3224(=2") 

Pe SNES ie 2 16 
=I 2520-94 

EXERCISES. GROUP 25 

In each of Exs. 1-14, perform the binomial expansion indicated. 

1. Ga — b). 2. @ — 2y). 3. (w + 3y)%. 

A(t = 9"). 5. (a2 + yf, 6. (a2 — x-®)8, 

Ga 2) hee AOR ae yt eee ee 
10. (a Vb +b Va). 11. (a — a Yt. 12. (V3 — V2)4. 
13. (a+b —c). 14.0 +24 +(1 —2)4. 

In each of Exs. 15-26, write and simplify the first four terms of the binomial 

expansion. 
y\6 b\9 

15) Ca — 5b)” 16. (+ af ‘). ae (« — :). 

a \10 
18. (< - ;) : 19. (w@% — y%)2, AO 1G) ee 

2190 ay. 2 tea 23 ee): 

24. (1 + 2)4, 25. (1 — x2)”, 26. (1 + 2)”. 
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27. Obtain the result of Ex. 21 by dividing 1 by 1 +2. 

28. Obtain the result of Ex. 22 by dividing 1 by 1 + 2. 

29. Evaluate (1.01)* by expanding (1 + 0.01). 

30. Evaluate (0.99)? by using a binomial expansion. 

31. Evaluate V0.99 correctly to 3 decimal places by using the result of Ex. 25 

32. Continue Pascal’s triangle (Sec. 7.5) for n = 6, 7, 8. 

33. Show that the coefficient of the rth term of (a + 5)”, as given by relation 

n! 

(n—rt+1)!(r—1)!" 

34. Show that the coefficient of the rth term of (a + 5)", as given by relation 

(1) of Sec. 7.6, holds for all values of r except 1, but that the form given in Ex, 33 

does hold for r = 1. 

35. Show that the coefficient of the (r + 1)th term of (a + 5)", as given by 
! n! 

r!(n—r)!° 

36. Show that the sum of the coefficients in the expansion of (a + 6)” is equal 

tome: 

37. Verify the property of the coefficients in the binomial expansion, as given 
by Ex. 36, in Pascal’s triangle. 

In each of Exs. 38-49, find only the specified term (s) in the given binomial 

(1) of Sec. 7.6, may be written in the form 

relation (2) of Sec. 7.6, may be written in the form 

expansion. 

38. Fourth term of (a — 26)9. 39. Eighth term of (wv + y’4)®, 

NG 11 
40. Fifth term of (» + ‘). 41. Seventh term of (5 = *) : 

; e aNe a »b\0 
42. Middle term of |- +-}. 43. Middle term of (5 _ *) : 

Ye by i 
a +) 

44. Two middle terms of (5 _ i) F 

45. Two middle terms of (ab + 4)". 
a 10 

46. Term involving a’ in (5 + °0) : 

2u 3y\10 
47. Term involving y4 in {| — + — erm involving y/‘ in (= a >) 

his 3 \8 
48. Term free of x in (= -— =) , 

xv yvs\ 16 
49. Term free of vin {= +=]. 

Yzs 

50. Show that the middle term in the expansion of (1 + «)?” may be written 
1-3+5+++(2n —1) 

in the form eek Ae 
n! 



8 

Complex numbers 

8.1. INTRODUCTION 

Up to this point our work, with few exceptions, has been confined to the 
real number system. We have, however, previously noted the need for 
complex numbers. In fact, in our first discussion of the numbers of 
algebra (Sec. 1.3), we arrived at the conclusion that the system of complex 
numbers was to be considered the number system of algebra. It is there- 
fore the object of this chapter to present a formal study of complex numbers 
and their properties. 

Although sufficient material has already been developed to perform 

many of the operations with complex numbers, we will find it extremely 

useful and convenient to introduce and use a trigonometric form of the 
complex number. This will require some knowledge of plane trigo- 
nometry on the part of the student. In Appendix I we have therefore 
included the necessary definitions and formulas of trigonometry. 

In previous chapters we have given some definitions and comments 

pertaining to complex numbers. For convenience and completeness, 

several of these statements will be repeated and included in the next 

section. 

8.2. DEFINITIONS AND PROPERTIES 

In the solution of the simple quadratic equation x? + 1 = 0, we seek a 

number x which meets the condition that x? = —1, a negative number. 

But from the rule of signs for the multiplication of real numbers (Sec. 2.5), 
it follows that every real number has the property that its square is a 
non-negative real number. Hence the number x sought as a solution of 

a2 + 1 = Ocannot be a real number. To meet this situation and to make 

163 
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the solution of the equation possible, we introduce a new number for 

which we have the 

Definition. The quantity / —1is called the imaginary unit, is represented 

by the symbol i, and has the property that i? = —1. 

To represent the square root of negative numbers other than —1, we 

introduce a new class of numbers for which we have the 

Definition. A number of the form bi, where b is any real number and i 

is the imaginary unit, is called a pure imaginary number. 

In connection with our study of the quadratic equation (Sec. 5.5), we 
saw that under certain conditions the roots of such an equation are 
numbers expressed as the sum of a real number and a pure imaginary 

number. Accordingly we have the 

Definition. A number of the form a+ bi, where a and 3b are real 

numbers and j is the imaginary unit, is called a complex number. 

If a = 0 but b #0, the complex number a + bi assumes the form Ji so 
that the pure imaginary number is a special case of the complex number. 
If b = 0, the complex number a + bi assumes the form a, a real number. 

In view of this fact it will be recalled that at the end of Sec. 1.4 we stated 
that a real number is merely a special case of a complex number; con- 

sequently, the set of all real numbers is said to be a subclass of the system of 
complex numbers. 

Definition. Two complex numbers a + bi and c + di are said to be 
equal if and only if a = c and b = d. 

As an immediate consequence of this definition, it follows that a + bi = 
0 if and only if a = 0 and b = 0. 

An illustration of the use of this definition is given by the following 

Example. Find real values of x and y such that the following relation 
will hold 

a + 2y? + ai t+ yi = ay t+ 7 4 3i. 

SOLUTION. We first rearrange the terms so that each side will be in the 
form of the complex number a + bi. Thus, 

(x? + 2y*) + (@ + y)i = (xy + 7) + 3i. 

Now, by the definition of the equality of two complex numbers, we have 
for the real and the imaginary parts, respectively, 

a + 2y? = vy + 7, 
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By the method of Sec. 5.12, the solutions of this system are readily found 
to be x = 1, y= 2 and x = 1), y = 1, and these are the required values. 

We have previously noted (Sec. 6.1) that the order relation of real 
numbers does not apply to complex numbers, that is, we do not speak of 
one complex number being greater or less than another. Consequently, 
complex numbers are not signed numbers (Sec. 2.4). But a complex 
number does have a negative for which we have the 

Definition. The negative of any complex number a + bi is —a — bi. 
Thus, —5i is the negative of 5i and 4 — 3i is the negative of —4 + 3). 

We conclude this article with the 

Definition. Two complex numbers that differ only in the sign of their 
imaginary parts are called conjugate complex numbers. 

Thus, a + bi and a — bi are conjugate complex numbers. 

8.3. FUNDAMENTAL OPERATIONS 

The four operations of addition, subtraction, multiplication, and 

division are called the fundamental operations. When applied to complex 
numbers, these four operations are defined in such a way that they obey 

all the laws of algebra, as discussed in Chapter 2 for real numbers, with 
two exceptions. One exception has already been noted, namely, that 

i? = —1, a property not possessed by real numbers. The other exception 
is the following law for real numbers, namely, 

For a> Oand b > 0, Va: Vb = Vab. 

This law does not apply to imaginary numbers. Thus, 

for a> 0 and b > 0, V—a:V —b $ V(—a\(—b) = Vab. 

The correct result is obtained as follows: 

J/—a-V —b = (Vail bi) = 2V ab = —V ab. 

To avoid this error we will always write complex numbers in the form 

a + bi, sometimes called the standard form, and then operate with 7 as with 

any other letter, finally replacing any powers of i as follows: i? >t, 

B= j?-j= —i, it = (7? = (—1)? = 1, #?® = i*-i =i, and so on. 

In accordance with the previous discussion, we will now frame defini- 

tions for the four fundamental operations, using the two complex numbers 

a+ biand c + di with the understanding that the final result will also be 

expressed in the standard form of a complex number. 
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(1) Addition. To add two (or more) complex numbers, we simply add 

the real and imaginary parts separately, just the same as we combine 

similar terms in the addition of ordinary algebraic expressions (Sec. 2.4). 

Thus, 

(a+ bi)+(c+di)=at+ct+bi+ di, 

or (at bi)+(ctd)=(ato+O4+ di, 

and this last statement is the definition of the sum of two complex numbers. 

(2) Subtraction. To subtract one complex number from another, we 
simply subtract the real and imaginary parts separately. Thus, 

(a+ bi)-—(c+di)=a—c+ bi -— di, 

or (a+ bi) — (c+ di) = (a—c) + (6 — d)i, 

and this last statement is the definition of the difference of two complex 

numbers. 
(3) Multiplication. The product of two complex numbers is obtained by 

multiplying them together as though they were ordinary binomials. and 

then replacing i? by —1. Thus, 

(a + bic + di) = ac + adi + bei + bdi?, 

or (a + bi)(c + di) = (ac — bd) + (ad + bc)i, 

and this last statement is the definition of the product of two complex 
numbers. 

(4) Division. To express the quotient of two complex numbers as a 
single complex number, we use a device analogous to the rationalization 

of the radical denominator of a fraction (Sec. 2.14). In this case we use the 

conjugate of the denominator instead of a rationalizing factor. Thus, 

Oi Di Gta Cra 

e+ di e+di c—di 

ace adi + bei — bdi? _ (ac + bd) + (be — ad)i 
ES e+ @ > 

Gi Ul ae pa be — ad 

C+ di (ibe CG =a 

and this last statement is the definition of the quotient of two complex 

numbers. 

or oe eee. 

In performing the fundamental operations with complex numbers, the 
student is advised not to use the above definitions as formulas. Instead, he 

should use the methods employed in obtaining these definitions, as shown 
in the following examples. 
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Example 1. For each of the following expressions, perform the 
indicated operation and express the result in standard form: 

(OVE Ey SPS yey ev tee 
(b) (2 + 31(2 — 3i)(1 + 2i). 

SOLUTION. (a) Whenever necessary we first express any imaginary terms 
in the form bi. Thus, 

3 + 2V—2 — AV—3 — 1) 4+ 27-4 =3 4 WI — AV3i—- 1) + 

Beet 225 2/81 2 = 43 2 4) + 

(QV2 — 2V3 + 2)i = 1 + (2V2 — 2V3 4 2)i. 

(b) Here the first two factors form a special product (Sec. 2.6) and we 

write 

CEOs 2) 4 — 921 123) — (4 —.9[— 11-4 2) 

Bayi 3(1) 42127) = 13-2 267. 

Example 2. Using the binomial theorem, evaluate (V3 —i)® and 

express the result in standard form. 

SOLUTION. In expanding by the binomial theorem, we treat i like any 

ordinary letter and then finally replace the various powers of i by their 

simplified values. Thus, 

(34 — 8 = (34)* + 6(3)(—i) + 158'){—1)? + 2084)(—1) 
+ 15(3'4)(—a! + 6(3)(—1)> + (—D8 = 33 — 6: 3°V3i 

4+ 15-3272 — 20-3 3i + 15-34 — 6V3i5 + i = 27 

Bes Ay oi 9135 4 O0V 31-11451-6V 31 — I= (27 — 135 

+ 45 — 1) + (—54V3 + 60V3 — 6V3)i = —64. 

Note that in simplifying we take i? = i4-i=iandi®=i*-?P =? = 

—1. We note also from the result that 1/3 — iis a sixth root of —64. 

ee 

Example 3. Express pee ss in the standard form of a complex 
yp 5 ees) 

number. 

SOLUTION. Here we treat each fraction separately. As in the derivation 

of the definition of the quotient of two complex numbers, we multiply 
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numerator and denominator by the conjugate of the denominator. Thus, 

ee ee) hes oi Liew Re 

pe eee ar) tL ae 

=e LS Veer 2.4 Abies ae 

Dt Dis +21 = 21) AA? 

aa 
== 1. 

4 4 

Hence, peal alias oil= 
f= 221 444 

EXERCISES. GROUP 26 

In each of Exs. 1-8, find real values of 2 and y such that the given relation 

holds. 

le+yi =2 —3i. 

3. « + 3y + (2a — 3y — 9)i =O. 

5. («@ + yi? =3 —4i. 
7. v2 —4y + Qy —2)i =2 -i. 

2. 3x — 2yi = 6 + 4i. 

4. 2x —y + By — 2a)i = 2 — 21. 

6. (« — yi)? = —8 — 6i. 

8. a + y? —2 +(x + 3y — 2)i = 0. 

In each of Exs. 9-34, perform the indicated operation(s) and express the 

result in standard form. 

OF | ey eyes Oy 10.242 Sees 

{1 OV Say i=) (286 F 22) 16143) 

130 VY 4 WSO a 16, 14, OVS36 VV Aor 
ee Le eee | oe 

, Wye gy ee) eS Ky) ey 15) a+ 5 4a 3 9a". 

(4 eet ee SS 
16. = V—16a2 + - V —4at — VY —27. 

D a 

ig PA ei dy Cia yh 18) 4 —"3iX3) + 43). 

192.) yo .2i\ 1 es), 20: (Base i (Qs ea): 

De (Veg eV RLV IN aS ed a ed) 

DD. (Nem eV a ee eC Vase Ce ee 
cn. kee say V2 AE 

23. -a. .(-5 +5 V3i — +— (i —i) 24 ( +5 V3). 25. (5 +i) 

5 1 3 
DS oe ; ——— 

/ 3 pees eee 

3-j 2-i i> + 3 
DAS pe 

1st Se CY teary 

B04) (adie 33.0(1 ci) sos 34. eet i 
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35. Show that the complex number | + V3i is a root of the equation 
22° — Ja +120? — So — 8 = 0, 

36. Show that the complex number | — V 3: is also a root of the equation of 
Exa35: 

37. Show that each of the complex numbers —4 + V2j and —} — V3 jis 
a cube root of unity. 

38. Show that either of the complex cube roots of unity, as given in Ex. 37, is 
equal to the square of the other. 

39. By factoring, find the four roots of the equation x* — 16 = 0 and show 
that their sum is equal to zero. 

40. Prove that the complex number a + bi is equal to zero if and only if 
a=Oandb =0. 

41. Prove that the sum of any complex number and its negative is equal to 
zero. 

42. Prove that the operation of subtracting one complex number z, from 

another complex number 2, is equivalent to the operation of adding z, and the 

negative of z,. 

43. If mand k are positive integers such that n = 4k + m, where m = 1, 2, or 

3, show that i” = i”. 

44. If aand 5 are both positive numbers, show that + Va:V—-b=+ V abi, 

(—Va)(—V —b) = Vabi, VY —a(—V —b) = Vab. 
45. For the two pure imaginary numbers 4/ and di, obtain definitions for their 

sum, difference, product, and quotient which are analogous to those given for 

the complex numbers a + bi and c + di (Sec. 8.3). 

46. If the complex number c + di + 0, show that c?2 + d? # 0 and hence that 

the result is valid in the definition of the quotient of two complex numbers 

(Sec; 8:3): 

47. Prove that the conjugate of the sum of two complex numbers is equal to 

the sum of their conjugates. 

48. Prove that the conjugate of the product of two complex numbers is equal 

to the product of their conjugates. 

49. Prove that the sum and the product of two conjugate complex numbers 

are real numbers and that their difference is a pure imaginary number. 

50. Prove that if the sum and the product of two complex numbers are both 

real numbers, they are conjugate complex numbers. 

8.4. RECTANGULAR REPRESENTATION 

We have seen previously that the real numbers may be represented 

graphically as points on a straight line (Sec. 3.7). To represent the complex 

number x + yi, however, it will be necessary to make provision for both 

the real numbers x and the pure imaginary numbers yi. This may be done 
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by using the rectangular coordinate system (Sec. 3.8) and assigning the 

X-axis to the real numbers and the Y-axis to the pure imaginary numbers. 

Thus, as shown in Fig. 25, the complex number 2 + yi is represented 

graphically by the point P, which is x units from the Y-axis and y units 

from the X-axis. Since the convention of signs for the rectangular 

coordinate system is to prevail here, the point P has as its rectangular 

coordinates the rea/ number pair (a, y). It is on this basis that we obtain 

en ee Pee ——o P(x + yl). iE q 
| 

Pe 3i) o-—-3- | 

| 
| 

| 

=e —2 —1 O 1 2 See 4 

od laa —P;(2 - 3i) 

=f 

Figure 25 

the points P;, P,, Ps; representing, respectively, the complex numbers 
2— 3i, —1 +..37, —2ivalso shown im) Fig, 25.9ltis customary to refer to 
the X-axis as the axis of reals and to the Y-axis as the axis of imaginaries. 

In view of this rectangular representation, the complex number 2 + yi, 
which we have previously called the standard form of the complex number 
(Sec. 8.3), is more generally referred to as the rectangular form. This 
latter term is particularly convenient when we contrast the rectangular 

representation of a complex number with its polar representation, which is 
discussed in the next section. 

NOTE 1. Since real numbers are distinct from pure imaginary numbers, it 

appears logical to represent them graphically on distinct lines. But it is not 
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apparent why these lines should be at right angles to each other as the X- and Y- 
axes are in the rectangular coordinate system. We will now justify this procedure. 

Consider, as shown in Fig. 26, a directed line segment OA along the positive 
X-axis and of arbitrary unit length, so that the point 4 represents the positive 
integer 1. We next introduce an operator, 

designated by the letter j, having the pro- 

perty that, when multiplied into any 
directed line segment, it rotates that 

segment about O in the counterclockwise 

direction through an angle of 90° but 

does not change the length of the seg- 
ment. Hence, if we multiply the directed 

line segment OA by /, we rotate OA about 

O through 90° in the counterclockwise 

direction so that it now occupies the 

position OB on the positive Y-axis, the 

point B representing the quantity j x 1 =. Figure 26 
Similarly, applying 7 to OB, we obtain 

the directed line segment OC on the negative X-axis, the point C representing 

the quantity 7 x 7 =/*. Similarly, applying 7 to OC, we obtain OD on the 
negative Y-axis, the point D representing the quantity j x /? =/°. Finally, 
applying j to OD, we arrive at the initial position OA, so that the point A now 

also represents the quantity j x j*? =/j*. 
We are now in a position to determine the nature of the operator 7 by con- 

sidering the directed unit line segment OA in its various positions on the 

coordinate axes. Since A represents 1 on the X-axis, C represents —1, that is, 

j? = —1. Similarly, since B represents j on the Y-axis, D represents —j, that is, 

j? = —j. Also, for the point A, 74 = 1. But all of these relations are precisely 
the properties of the imaginary unit 7. Hence the operator j and the imaginary 
unit i are identical, and this explains why the pure imaginary numbers are 

represented by points on the Y-axis. 

We next consider the graphical representation of the sum of two given 

complex numbers. Let the points P,(a, 6) and P,(c, d) represent the complex 

numbers a + bi and c + di, respectively, as shown in Fig. 27. Connect 
each of these points with the origin O and complete the parallelogram 
OP,PP, having OP, and OP, as adjacent sides. Let A, B, and C, respec- 

tively, be the feet of the perpendiculars drawn from P,, P,, and P to the 

X-axis, and draw P,D perpendicular to PC. By geometry, the right 

triangles OP,A and P,PD are congruent so that OA = P,D = BC and 

ALD Pas lien 

OC=0B+ BC=O0OB+P,D=0B+ O0OA=a+ eo, 

CP =CD+ DP = BP, + AP, =b +d. 

Hence the point P represents the complex number (a + c) + (6 + d)i, the 

sum of the two complex numbers a + bi and c + di. 
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To subtract one complex number from another graphically, say ¢ + di 
from a + bi, we add the complex numbers a + bi and —c — di, using the 

graphical method for addition described 
above. It is left to the student as an 
exercise to draw a figure, similar to Fig. 
27, representing the difference of two 
given complex numbers. 

NOTE 2. The student who has studied 
the addition of two vectors in physics by 
means of a parallelogram will recognize 

that the operation is identical with that of 

Figure 27 the graphical representation of the addition 
of two complex numbers. It appears then 

that complex numbers and vectors are closely related. We shall comment further 
on this later (Sec. 8.8). 

NOTE 3. The graphical representation of the product and also the quotient of 
two given complex numbers in rectangular coordinates may be effected by means 
of geometric constructions. However, as shown in the next section, these 

operations may be very conveniently considered by means of another representa- 
tion known as the polar form of a complex number. 

8.5. POLAR REPRESENTATION 

We now introduce a trigonometric form of the complex number, a form 
which has certain distinct advantages over the rectangular form. In Fig. 

28, let the point P represent the complex number x + yi. Draw the line 

segment OP connecting P and the origin, and let its length be denoted by r. 
From P drop the perpendicular PA to 

the X-axis, and denote the angle POA Y 

by 6. Then by trigonometry (Appendix 
(x,y) 

I), we have from the right triangle OAP, 2 (r, 0) 

CG) x=? cos 0; yp =o sity G, 

(2) r= Vai t x, p=, 

(3) tan =, uae NO 
x 

> X 

Hence, from relation (1) we may write 

(4) x + yi = r(cos 6 + isin 6). 

The right member of (4) is called the polar form of the complex number. 
The length r is called the modulus or absolute value of the complex number 

and is always a non-negative quantity whose value is given by (2). 

The angle 6 is called the amplitude or argument of the complex 

Figure 28 
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number and, unless otherwise specified, will be restricted to the range 
0 <6 < 360°. 

NOTE |. Since the modulus r is also called the absolute value (Sec. 2.4) of the 
complex number, we may write r = |x + iy]. 

For a particular complex number, the amplitude @ has a unique value 
which is non-negative and less than 360°, and may be determined from 
the relations (1). It may also be determined from relation (3) and the 

quadrant in which 6 lies. We note that relation (3) has the restriction that 
x+~0. If x = 0, the complex number x + yi takes the form of the pure 

imaginary number so that 0 = 90° if y > 0 and 6 = 270° if y < 0. It is 
clear that a complex number and its graphical representation are uniquely 
determined for given values of r and 6. 

In this and the following section we shall consider the operations of 
multiplication, division, involution, and evolution on complex numbers 
when in the polar form. Hence, if the complex numbers are given in 
rectangular form, it is extremely important to obtain their correct polar 
forms. The process is illustrated in 

Example 1. Find the modulus, amplitude, and polar form of the 
complex number —2 + 2i. 

SOLUTION. In order to reduce the possibility of error, it is always best 
first to plot the given complex number, 

as shown in Fig. 29. Then the modu- 

lus is given by 

r=V2 +y= V44+4= av 2. 

For the amplitude 6 we have 

tan 0 = y/x = 2/—2 = —-1, 

from which, since @ is in the second 

quadrant, the amplitude 6 = 135°. Hence 
the polar form of —2 + 2i is Figure 29 

2V2(cos 135° + isin 135°). 

As a check, we may evaluate the polar form and see if we obtain the 

given rectangular form. This is left as an exercise to the student. 

We now consider the product of two given complex numbers in polar 

form. Thus, 

[r,(cos 6, + isin 6,)][r2(cos 4, + isin 95)] 

= rr2(cos 6, cos 9, + icos 4, sin 6, + isin 0, cos 6, + i? sin 6, sin 65) 

= rp[(cos 6, cos 0, — sin 0, sin 4) + i(sin 0, cos 6, + cos 4, sin 8,)] 

ryra[cos (6, + 62) + isin (A, + 42)], 

by the addition formulas of trigonometry (Appendix I). 
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We state this result as 

Theorem 1. The modulus of the product of two complex numbers is equal 

to the product of their moduli and the amplitude of the product is equal to the 

sum of their amplitudes. 
Corollary. The modulus of the product 

of three or more complex numbers is equal 
to the product of the moduli of the factors 
and the amplitude of the product is equal to 
the sum of the amplitudes of the factors. 

Example 2. Find the product of the 
complex numbers 3(cos 45° + isin 45°) 
and 2(cos 30° + isin 30°). Illustrate the 

process graphically. 

SOLUTION. By Theorem 1, the modulus 
of the product =2-3=6, and the 

amplitude = 45° + 30° = 75°. Hence the 
; product in polar form is the complex 

Figure 30 number 6(cos 75° + isin 75°). 
The results are shown in Fig. 30 where 

the points P,, P,, and P represent the first factor, second factor, and 

product, respectively. 

We next consider the quotient of two given complex numbers in polar 
form. Thus, 

ry(cos 0, + isin 6,) _ r, cos 6, + isin 6, cos 6, — isin 0, 

rcos 8, + isin6,) rz cos 6, + isin 6, cos 6, — isin 6, 

__ Ty cos 0, cos 6, — i cos 6, sin 6, + i sin 6, cos 6, — isin 6, sin 05 

i cos 6. — i” sin? 6, 

Ty cos 6, cos J, + sin 6; sin 6, + i(sin 6, cos 6, — cos 6, sin 3) 

i cos? #, + sin? 6, = 1 

= 7 [cos (0; — 6.) + isin (0, — 4,)], 
I 

by the subtraction formulas of trigonometry (Appendix I). 
We state this result as 

Theorem 2. The modulus of the quotient of two complex numbers is 
equal to the modulus of the dividend divided by the modulus of the divisor, and 
the amplitude of the quotient is equal to the amplitude of the dividend minus 
the amplitude of the divisor. 
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Example 3. Find the indicated quotient and express the result in 
rectangular form: 

A(cos 75° + isin 75°) + 2(cos 45° + isin 45°). 

SOLUTION. By Theorem 2, 

4(cos 75° + isin 75°) 4 x a a : 
a(cos 45° + f sin 45°) 45° + isin 45°) > . [cos (75° — 45°) + isin (75° — 45°)] 

= 2(cos 30° + i sin 30°) = \/3 + i. 
The student should illustrate this problem graphically. 

NOTE 2. If the amplitude of a complex number is a special angle such as 30° or 

45°, or a multiple of either of these angles, the polar form is readily transformed 
into the rectangular form, and vice versa. But for other angles, a table of 

natural trigonometric functions is required (Appendix II). 

EXERCISES. GROUP 27 

In each of Exs. 1-9 plot the given complex number, its conjugate, and its 

negative. 

ie Wee Beye D2 497, oe, 
AAT 35 5. 3i. 655 eA 
Tie 0 41. eee 02f T 

In each of Exs. 10-23, perform the indicated operation(s) both algebraically 

and graphically. 

iKouts peegl pee Oh eas Geet) 

(oe ery A 5 2): 1364 9) Ve = 10), 
[a te 2) a (Oe B7), iS a Giee ear). 

(onGrrevi=5)t G5 24), {7eCla |) ae 5: 
18OGrP ory — 5: 198 (27) 47: 
20. (6 +i) + (—3 —2)+ (1 +32). 21.2 —4) + (+7) + (-7 — 2). 

22(8 41) + (1) 31) = (6 — 21). 23. (4"— 21) —(2 + 1) + (—2 — 7), 

In each of Exs. 24-32, find the modulus, amplitude, and polar form of the 

given complex number. 

DA Led. Dial ORIEN No Gees 20 

OTe tN Set f OS) = Vo 21. Dom 

BODY) = 2 21. Aya whe Bip 

In each of Exs. 33-36, find the indicated product, using Theorem 1 of Sec. 8.5. 

Express the result in rectangular form. 

33. 2(cos 30° + isin 30°) - 3(cos 60° + isin 60°). 

34. 3(cos 45° + isin 45°) - V2(cos 90° + isin 90°). 

35. 4(cos 180° + isin 180°) - (cos 30° + isin 30°). 

36. (cos 20° + isin 20°) - 4(cos 100° + isin 100°). 



176 Complex Numbers Ch. 8 

In each of Exs. 37-40, find the indicated quotient, using Theorem 2 of Sec. 8.5: 

Express the result in rectangular form. 

3(cos 130° + isin 130°) 5(cos 135° + isin 135°) 

2(cos 70° + isin 70°) © “cos 45° + isin 45° 

6(cos 220° + isin 220°) © 4(cos 70° + isin 70°) 

*  3(cos 40° + isin 40°) © " 2(cos 50° + isin 50°) ° 

41. Show how the method of finding the sum of two given complex numbers 
graphically may be extended to the sum of three or more complex numbers. 

42. Draw a figure illustrating the graphical method of finding the difference 
of two given complex numbers. Explain each step fully, as in the analogous 
problem of graphical addition (Sec. 8.4). ‘ 

43. If the point P, represents a complex number and the point P, represents 

the negative of that number, show that the line segment P,P, passes through the 

origin O and is bisected at O. 

44. Show that if a complex number is equal to zero, its modulus is equal to 

zero, and conversely. 
45. Show that a complex number and its negative have the same modulus. 

46. Show that a complex number and its conjugate have the same modulus. 

47. Show algebraically that the modulus of the product of two complex 
numbers is equal to the product of their moduli. 

48. Show algebraically that the modulus of the quotient of two complex 
numbers is equal to the quotient of their moduli. 

49. Show that if two complex numbers are equal, their moduli are equal but 

that the converse is not necessarily true. 

50. Establish the corollary to Theorem | (Sec. 8.5). 

51. By multiplying any complex number in polar form by the imaginary unit 7 
in polar form, show that the amplitude of the product exceeds that of the given 
complex number by 90°. Compare this result with the definition of the operator 
J in Sec. 8.4. 

In each of Exs. 52-55, 2; and z, represent, respectively, the complex numbers 

LX, + Yi and Xy + Ypi. 

52. Show graphically that the modulus or absolute value of the sum of two 
complex numbers is less than or equal to the sum of their moduli or absolute 
values, that is, show that 

[zy + 29] < lz] + lzol. 
Hint: The sum of two sides of a triangle is greater than the third side. 

53. Show graphically that the modulus or absolute value of the difference of 
two complex numbers is greater than or equal to the difference of their moduli or 
absolute values, that is, show that 

[24 — 2q| = lz] — leel. 

54. Establish the result of Ex. 52 algebraically. (See Example 2 of Sec. 6.6.) 

55. Establish the result of Ex. 53 algebraically. (See Ex. 11 of Group 23, 
Sec. 6.6.) 
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8.6. INVOLUTION AND EVOLUTION 

We now consider the remaining two algebraic operations, involution and 
evolution, applied to complex numbers. Since involution is a special case 
of multiplication (Sec. 1.3), we first refer to Theorem 1 of Sec. 8.5 on the 
multiplication of two complex numbers. It follows from this theorem that 
if the two complex numbers are each equal to r(cos 6 + isin 6), then their 
product is given by the relation 

[r(cos 6 + isin 6)]? = r(cos 20 + isin 26). 

As an immediate extension of this result, we have 

[r(cos 6 + isin 6) = r3(cos 36 + isin 36). 

We are thus led to infer that if 1 is any positive integer, then 

(1) [r(cos 6 + isin 6)]” = r”(cos nO + isin n6). 

Relation (1), known as De Moivre’s theorem, may be established by 
mathematical induction (Sec. 7.2) as we shall now show. 

The relation is obviously true form = 1. Assuming it is true for n = k, 
we have the assumed equality 

(2) [r(cos 6 + isin 6)]}* = r*(cos kO + isin k6). 

Multiplying both sides of (2) by r(cos 6 + isin 0), we have 

(3) [r(cos 6 + isin 6)]**! = r*1[cos (k + 1)6 + isin (k + 1)6], 

where the right side of (3) follows from Theorem 1 of Sec. 8.5. 
But relation (3), which follows directly from relation (2), is precisely the 

same as relation (1) with n replaced by k + 1. We have therefore shown 
that if (1) is true for n = k, it is also true forn =k + 1. Hence, since 

(1) is true for n = 1, it is also true for nm = 2. Similarly, if it is true for 

n = 2, it is true for n = 3, and so on for all positive integral values of n. 

This completes the proof of 

Theorem 3. (De Moivre’s Theorem). If n is any positive integer, and ifr 

and 0 are, respectively, the modulus and amplitude of any complex number, 

then 
[r(cos 6 + isin 6)]” = r(cos n6 + isin n8), 

that is, if n is a positive integer, the modulus of the nth power of a complex 

number is equal to the nth power of the modulus of the number, and the 

amplitude of the nth power is equal to n times the amplitude of the number. 
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Example 1. Using De Moivre’s theorem, evaluate (V3 —i)® and 

express the result in rectangular form. 

SOLUTION. This problem involves exactly the same expansion evaluated 

by means of the binomial theorem in Example 2 of Sec. 8.3. By compari- 

son, we will now see one of the advantages of the polar form of the 

complex number. We first express V 3 — i in the polar form and then 

apply De Moivre’s theorem. Thus, 

(V3 — i)® = [2(cos 330° + isin 330°)]$, 

by De Moivre’s theorem, = 2°(cos 1980° + isin 1980°), 

by trigonometry, = 64(cos 180° + isin 180°), 

= 64(—1 + 0) = — 64. 

We next consider the operation of evolution, that is, the determination 
of the roots of a complex number. For n a positive integer, let r be a 
positive number and r1/” its principal nth root and therefore also a unique 
positive number (Sec. 2.13). Consider a complex number with modulus 

7) 6 
r!/" and amplitude 6/n so that its polar form is r(cos —+ isin a The 

n n 
nth power of this number is r(cos 6 + isin 6) by Theorem 3 (De Moivre’s 

theorem), that is, 

r(cos 6 + isin 0) = [4!(cos 8 + isin *)) : 
n n 

Taking the nth root of both sides of this last relation, we have 

(4) [r(cos 0 + isin 6)]/" = rIn(cos 4 SS rsin a 
n n 

that is, De Moivre’s theorem also holds for I/n, the reciprocal of any 
positive integer. 

Relation (4), as it stands, gives only one nth root of a complex number. 
We will now see how to obtain all of the nth roots. The values of the 
trigonometric functions of any angle remain unaltered if that angle is 
increased or decreased by any positive integral multiple of 360°. Hence, 
for any complex number, if k is a non-negative integer, we may write 

r(cos 8 + isin 0) = r[cos (0 + k - 360°) + isin (6 + k + 360°)], 

where the right member is often called the general or complete polar form of 
a complex number. Taking the nth root of both sides in accordance with 
relation (4), we have 

(3) [cos 0+ isin 4p! = rl cop AK SOM 4 sin oe 
i n 
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If in (5) we set k = 0, 1, 2, 3,-+-, — 1 in turn we obtain the following 
n distinct nth roots of r(cos 6 + isin 6): 

For k = 0, rl cos 8 + isin 4, 
n n 

k=1, rl cos saseala + isin oe slay 360" 
n n 

k = 2, Pin| cos 2H 2360" 4 gn 9+ 2 360") 
n n 

ea 2 ey a EE ei Aes MEE 
Li n 

These n roots are all different because the amplitudes of any two of 
them differ by less than 360°. Furthermore, there are no more than n 
distinct roots, for, if we assign values to k greater than n — 1, we obtain 
the same roots over again. Thus, for k =n, the root takes the form 

6 6 
ri] cos (° ae 360") + isin i; + 360°) | which is identical with the root 

n n 

obtained for k = 0. 

We note, furthermore, that since all n roots have the same modulus r1/” 

and since, for successive values of k, the amplitudes differ by 360°/n, the 

graphical representation of these roots consists of points equally spaced 
on the circumference of a circle whose center is at the origin and whose 
radius is equal to the common modulus r1/”. 

The preceding results are summarized in 

Theorem 4. Every number (except zero), real or complex, has exactly 

n distinct nth roots. 
If the modulus and amplitude of any number are represented by r and 6, 

respectively, the n roots are given by the expression 

rin| cos 2 A360" 4 sin 9A E380] 
n n 

where r}/" represents the principal nth root of the positive number r and k 

takes on the values 0, 1, 2,°+ +, (m — 1) in turn. 

These roots are represented graphically by the vertices of a regular polygon 

of n sides inscribed in a circle whose center is at the origin and whose radius is 

equal to rl”. 

It has now been shown that De Moivre’s theorem is true when the 

exponent n is any positive integer or the reciprocal of any positive integer. 
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We may also show that it holds when n is a negative integer and finally 

when n is any rational number. The proofs of these last two cases are left 

as exercises to the student. 

NOTE 1. De Moivre’s theorem holds for all values of the exponent n, real or 

complex. The proof for values of n other than rational values is beyond the 

scope of this book. 

Example 2. Find the four fourth roots of —8 + 8 \/3i and represent 

them graphically. 

SOLUTION. We first obtain the polar form of the given complex number. 

Thus, _ 

—8 + 8V3i = 16(cos 120° + isin 120°), 

in general polar form, 

= 16[cos (120° + k - 360°) + isin (120° + k - 360°)]. 

Then by Theorem 4, the expression for the fourth roots is given by 

16°|c0s 120° + k + 360°, 5, 120° + k: 360 | 
4 a 

= 2[cos (30° + k - 90°) + isin (30° + k - 90°)]. 

Assigning to k the successive values 0,1, 2,3, we have the four 

required roots: 

k =0, 

2(cos 30° + isin 30°) = BRP i 

k=1, 

(cos 120° + isin 120°) = —1 + V3i, 

k = 2, 

2(cos 210° + isin 210°) =—V3 — i, 
k = 3, 

2(cos 300° + isin 300°) = 1 — V3i. 
Figure 31 The roots are represented graphically 

in” Fig. “31 by thespointse rps ree 
where the subscripts correspond to the values assigned to k. These 
points lie on the circumference of a circle whose center is the origin O and 
whose radius is equal to 2, the common modulus of the roots. Further- 
more, the points are the vertices of a square inscribed in the circle. 

Example 3. Find all the roots of the equation 2? — 1 =0 by two 
methods: (a) by means of De Moivre’s theorem and (b) algebraically. 
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SOLUTION. (a) The solution of this equation requires the determination 
of the three cube roots of unity. Hence we proceed as in the previous 
example. Thus, 

1 = l(cos 0° + isin 0°) = cos k - 360° + isin k - 360°. 

By Theorem 4, the expression for the cube roots is 

cos K360 Sig ae etal 
= Cosi AO? SS 7 Sie oO. 

Then for the three cube roots we have 

for k =0, cos 0° + isin 0° = 1, 

k I cos 120° + isin 120° = — 

k =2, cos 240° + i sin 240° 

(b) The equation a? — 1 = 0 may be readily solved by factoring. 

Thus, («7 — 1\(#? +24 1)=0. 

From the first factor we have the root x = 1. 

Setting the second factor equal to zero and using the quadratic formula, 
we have 

= - 3 
im Seen ee aaa 1 ee v3 i. 

2 ee 2 

NOTE 2. We have now seen that if we apply any of the six operations of algebra 

to complex numbers, the result is always a complex number, that is, the complex 

number system is sufficient for our algebra. In this connection the student 

should reread the last paragraph of Sec. 1.4. 

EXERCISES. GROUP 28 

In the exercises of this group, if the amplitudes are special angles whose 
trigonometric functions may be found without using tables, the final results 

should be expressed in rectangular form; otherwise they may be left in polar 

form. 

In each of Exs. 1-12, find the indicated power by De Moivre’s theorem. 

1. [2(cos 15° + isin 15°]. 2. [V2(cos 30° + isin 30°}. 
3. [V3(cos 15° + isin 15°)]°. 4. [2(cos 45° + isin 45°)}*. 

5. [V5(cos 20° + isin 20°)}. 6. [2'4(cos 150° + isin 150°). 

Tee: Sa —1 Fev), vet ea es 

10% (Va 11. (—VB + 40°. 12. (—V¥ — V3i)*. 



182 Complex Numbers Ch. 8 

In each of Exs. 13-18, find the indicated power by (a) the binomial theorem; 

(b) De Moivre’s theorem. r. 

13a (env 30°. 140 Gli) 15. (V3 — i. 

16. (4 + V3i)?. 17 (Deny Bi) 18..(—1 — V 30% 

In each of Exs. 19-31, find the specified roots and represent them graphically. 

19. The three cube roots of —27. 

20. The three cube roots of 8(cos 60° + isin 60°). 

21. The three cube roots of —2 + 2i. 

22. The four fourth roots of —8 — 8V3i. 

23. The four fourth roots of —4. 

24. The four fourth roots of 4 — 4V3i. . 

25. The five fifth roots of 32. 

26. The five fifth roots of —16 — 16V3i. 
27. The six sixth roots of 271. 

28. The six sixth roots of 1 + V3i. 

29, The eight eighth roots of —128 + 128 V3i. 

30. The eight eighth roots of —} — i. 

31. The nine ninth roots of —i. 

In each of Exs. 32-37, find all the roots of the given equation by means of 

De Moivre’s theorem and also algebraically. 

By, ae? 453 Sl), 28), a = il = ©. 34. «6 — 64 = 0. 

Bb), w= il 0), 36ma5 16710: Sil OE 

38. In the statement of Theorem 4 (Sec. 8.6), the number zero is excluded. 

Give the reason for this. 

39. Show that De Moivre’s theorem holds when n = —m, a negative integer. 

40. Show that De Moivre’s theorem holds when n = p/q, any rational number. 

8.7. GROUPS 

In this section there is given a brief and elementary introduction to a 
topic of great importance in more advanced mathematics, namely, the 
concept of a group for which we have the following 

Definition. A set of elements is said to form a group with respect to a 
single operation (denoted by the symbol 0) provided that these elements 
obey the following four postulates: 

1. Closure. If a and b are any two elements (not necessarily distinct) of 
the set, then a o b is a unique element of the set. 

2. Associative. If a, b, and c are any three elements of the set, then 
(aob)oc=ao(boc). 
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3. Identity. There exists an element e in the set, called the identity 
element, having the property that, for every element a in the set, 

aoe=eoa=a. 

4. Inverse. For every element a in the set, there exists an element a’ also 
in the set such that ‘ 

aod =a'oa=e. 

The element a’ is called the inverse of a. 

As an indication of the importance of the group concept in the fields of 
analysis and geometry it may be noted that the elements of a group may 
not only be the ordinary numbers of our algebra but also such varied 
entities as matrices, quaternions, vectors, substitutions, and transforma- 

tions. 

A simple example of a group is the set of all positive and negative integers 
and zero when the law of combination is the operation of addition. Thus, 
if a and b are any two integers, then a + 6 is a unique integer (Sec. 2.3), 
and Postulate 1 is satisfied. Postulate 2 is satisfied since addition is 
associative (Sec. 2.3). The number zero is the unique identity element 

since zero is the only number having the property that for any integer a, 

a+0=0-+a=a (Sec. 2.4). Hence, Postulate 3 is satisfied. Finally, 

Postulate 4 is satisfied since each integer has its corresponding negative as 

its inverse, that is, if a is any integer, then a + (—a) = (—a) + a=0 

(Sec. 2.4, Theorem 1). Since the number of elements in this group is 
unlimited, it is called an infinite group. An example of a finite group is 

given below. 
The reason for introducing the group concept at this point is illustrated 

in the following 

Example. Show that the three cube roots of unity constitute a group 

with respect to the operation of multiplication. 

SOLUTION. In Example 3 of Sec. 8.6, we found that the three cube roots 

V3 an 
Of Unity ate l,—3 + aril i, and —4 — oe ils 

It is easy to show that any one of these complex cube roots is equal to 

the square of the other (Ex. 38, Group 26, Sec. 8.3). Hence, if one complex 

cube root is denoted by w, the other may be represented by w®. We are to 

show, therefore, that the three quantities 1, w, and w” constitute a group 

with respect to multiplication by proving that they satisfy the four postu- 

lates of a group. . 

1. The product of any two cube roots is also a cube root of unity. Thus, 

lxo=0,1x @& =o%,0 x wo =o? = 1, 

2. The associative law holds, that is, (1 X m) X w? = 1 xX (w X w?) = w. 
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3. The identity element is obviously 1. 

4. The inverse of each element is its reciprocal, and these reciprocals are 

also elements of the group. Thus, 

we Oe oe , 1 Oo oO 
=— = — = ww, i oS ae 

1 7) ) 1 
= Ww. 

[s) 

i 
il w 

Obviously, the product of any element and its inverse is the identity 

element 1. 

8.8. VECTORS y 

In this section we consider briefly the subject of vectors, which, as we 

have previously noted (Sec. 8.4, Note 2), are closely related to complex 

numbers. 
In physics a vector is a quantity which has both magnitude and direction. 

Examples of vectors are force, velocity, and acceleration. A vector may be 
represented graphically by a directed line segment whose length, according 

to a suitable scale, denotes the magnitude 
of the vector. Since we shall here 
consider only coplanar vectors, that is, 
vectors lying in the same plane, we will 
use the plane of the rectangular coordin- 
ate system as their common plane. This 

also gives us a very convenient means for 

representing vectors in the plane. Thus, 

as shown in Fig. 32, the line segment OP 
directed from the origin O to the point P 
represents a vector whose length OP = r 

denotes the magnitude of the vector. The 
direction of the vector is given by the angle 6 which the directed line 
segment OP makes with the positive X-axis. The arrow head gives the 
sense of the direction and indicates that the vector is directed from its 
initial point O to its terminal point P. The projection of the vector on the 
X-axis, the directed line segment OA = «, is called its horizontal component, 

and the projection on the Y-axis, the directed line segment OB = y, is 
called its vertical component. 

It is now evident from the above orientation of a vector, with its initial 
point at the origin O, that a vector is completely specified provided that we 

can definitely locate its terminal point P. But, as we have previously seen, 
the point P is uniquely determined as the geometric representation of a 

Figure 32 
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complex number. In the rectangular form (Sec. 8.4), P represents the 
complex number x + yi where z is the horizontal component and y the 
vertical component of a vector whose magnitude is represented by a 
directed line segment of length V2? + y?. In the polar form (Sec. 8.5), 
P represents the complex number r(cos 6 + isin 6) where the modulus 
r represents the magnitude of the vector and the amplitude 6 gives the 
direction of the vector with respect to the positive X-axis. It follows, 
therefore, that if the initial point of a vector is the origin of the rectangular 
coordinate system, the vector is completely specified if we know either of 
the number pairs (2, y) or (r, 9), where the letters have the significance 

previously stated. Hence it will be convenient to designate a vector by 
either of these number pairs. 

Two vectors are said to be equal provided that they are represented by 
two directed line segments having the same length, the same direction, and 
the same sense. Thus, any vector a located anywhere in the coordinate 

plane may be replaced by a vector represented by a line segment parallel 

and equal in length to the line segment representing a and also having 
the same sense but with its initial point 
at the origin. We may then designate 
the equal vector by either of the number 

pairs (a, y) or (r, 9). 

Consider now the vectors a and b 
having the respective terminal points P, 
and P, but the same initial point O, as 
shown in Fig. 33. Draw the line segment 
P,P parallel and equal in length to OP, Figure 33 
so that the line segment P,P with its 
initial point at P, also represents the vector b. The point P is then the 
terminal point of a vector s represented by the directed line segment 
OP and defined as the sum of the vectors a and }, Mele 1S) = @ Se Ip. 

If the student will now compare this definition with the discussion of Fig. 
27 in Sec. 8.4, he will see the similarity between the addition of vectors 
and the addition of complex numbers. We note also that by drawing 

the line segment P,P we complete a parallelogram, the basis of the so-called 

parallelogram law for the addition of two vectors. 

Example. Find the sum of the two vectors a (6, 30°) and b (4, 60°) both 

graphically and analytically. 

SOLUTION. For the graphical addition we follow the procedure outlined 

in the definition of addition above. We first plot the terminal points 

P,(6, 30°) and P,(4, 60°) of the given vectors a and 5, respectively, and 

then complete the parallelogram having OP, and OP, as adjacent sides, as 
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shown in Fig. 34. This gives us the terminal point P of the required vector 

sum OP. 
By geometry, the horizontal and vertical components of vector a are 

3V3 and 3, respectively, and the horizontal and vertical components of 

vector b are 2 and 2/3, respectively. Hence the horizontal and vertical 

components of the vector sum OP are 3/3 + 2 and 3 + 2V3, respec- 

i p P(r, 6) 

2V3 

Figure 34 

tively. We then have for the magnitude and direction, respectively, of the 
vector sum OP: 

tS ye? = VG /3 4 2) Cena) aa o1s. 
3 + 2,/3 

6 = arc tan i ot arc tan eee v = 41° 56’. 
ae 3/3 + 2 

One vector is said to be the negative of another vector if both vectors are 

parallel, have the same magnitude, but are opposite in sense. To subtract 

the vector b from the vector a, we add the negative of 6 to a, that is, 

a—b=a+(—b), 

or the difference a — b of two vectors is equal to the sum a + (—5d). 
Hence we may obtain the difference of two vectors by an equivalent 
operation of addition as described above. 

In conclusion, even this brief discussion indicates the close relation 
between vectors and complex numbers. This relation arises in many 
applications, for example, in the theory of alternating current circuits. 
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The properties and applications of vectors comprise a vast field of great 
importance. They are the subject of advanced study in treatises on vector 
analysis. 

8.9. FUNCTIONS OF A COMPLEX VARIABLE 

We close this chapter with a few brief remarks on functions of a complex 
variable. In Sec. 3.3 we defined y as a function of a single variable x. If 

x is restricted to real values, we say that y is a function of a real variable x. 

If, however, we have a functional relation in which the independent 
variable is permitted to assume complex as well as real values, we are said 
to have a function of a complex variable. It is customary to express this 
relation in the form 
(1) w = fl), 
where z = x + yi, x and y are real variables, and i is the imaginary unit. 
It follows, in general, that w may be written in terms of two expressions 

containing the variables x and y, one with real coefficients and the other 
with imaginary coefficients. We write this in the form 

(2) w= u(x, y) + iv(x, y), 
where uw and v are each functions of the real variables x and y. We illustrate 

this situation in the following 

Example. If w = z?, where z = x + yi, find the functions u(x, y) and 

v(x, y) as defined by relation (2) above. 

SOLUTION. w = 22 = (x + yi)? = 2? + 2zyi — y? 

= x — y? + i(2zy). 

Hence, ua, y) = 2 — y", 

and WORT) ees Ohh 

We will now consider some of the distinctions between the functions of 

a real variable and those of a complex variable. In Sec. 3.9 we discussed 
the graphical representation of the functional relation y = f(x) by plotting 
points in the rectangular coordinate system, using the X-axis for real values 

of the variable x and the Y-axis for real values of the variable y. But the 

situation is entirely different for the graphical representation of the func- 
tional relation w = f(z) as given by equation (1) above. Here, in order to 
plot the independent variable z = x + yi, we require the entire wy-plane or 
z-plane (Sec. 8.4), and no room is left for the corresponding values of the 

function w. To meet this situation, we create another coordinate plane 

called the wv-plane or w-plane, in accordance with relation (2). That is, just 

as we plotted the point z = # + yias a point with the real coordinates (x, y) 
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in the z-plane, so we plot the corresponding point w=u-+ vi as a 

point with the real coordinates (u, v) in the w-plane. We thus study the 

geometric or graphical representation of the functional relation w = f(z) by 

a correspondence between points of the z- and w-planes. With suitable 

definitions and restrictions, this correspondence is known as conformal 
representation. It is of considerable importance in the theory and applica- 

tion of analytic functions of a complex variable. 
The student who has studied logarithms will recall that in the relation 

y = log x, the number z is restricted to positive values, that is, logarithms 

of positive numbers only are considered. But in the theory of functions of 
a complex variable, it is shown that logarithms of negative numbers also 
exist; in fact, it is shown that there are logarithms of any of the numbers of 
our algebra, real or complex. 
We have another distinction in trigonometry. In elementary trigo- 

nometry, the various trigonometric functions are restricted to real values of 
the angle. Thus, in the relation y = sin x, the angle x is permitted to take 

on only real values and y can never have an absolute value greater than 
unity. From this point of view, the angle x has no meaning in the relation 
sina = 2. Butif x is permitted to assume all values, real or complex, this 

last relation has a definite meaning in the field of functions of a complex 
variable. 

There are many other distinctions between functions of real and complex 

variables, but the few examples given above illustrate the fact that the 
theory of functions of a complex variable has served to unite many 
concepts previously considered disconnected. Permitting the independent 
variable to assume any values, real or complex, is a procedure appro- 
priately called generalization, for it gives more general results whose 
existence would otherwise be unknown. The theory of functions of a 
complex variable is an important subject of advanced study and is the basis 
of analysis with its many applications to mathematical physics, particularly 
in the fields of hydrodynamics, heat, and electricity. 

EXERCISES. GROUP 29 

1. Show that the set of all positive and negative integers and zero constitutes 

an infinite group with respect to the operation of subtraction. 

2. Show that the set of Ex. 1 does not constitute a group with respect to 
multiplication. 

3. Show that the set of all real numbers constitutes a group with respect to 
addition but not to multiplication. 

4. Show that the set of all positive rational numbers constitutes a group with 
respect to multiplication. 
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5. Show that the set of all rational numbers constitutes a group with respect 
to addition. 

6. Postulate | for a group states that any two elements which are combined 
need not necessarily be distinct. If the rule of combination is multiplication, this 
implies that the square of any element must also be an element of the group. 
Verify this fact for the group of the Example of Sec. 8.7 by showing that the 
Square of every element is also an element of the group. 

7. Show that the four fourth roots of unity constitute a group with respect to 
multiplication. 

8. Show that unity and all integral powers (positive and negative) of the 
imaginary unit i form a group with respect to multiplication. 

9. Prove that the identity element e of a group is unique. Hint: Assume 
there are two identity elements and then show that they are identical. 

10. Prove that for every element a of a group, its inverse a’ is unique. Hint: 
Assume a has two inverses and then show that they are identical. 

In Exs. 11-16, 1, @, w? represent the three cube roots of unity. 

11. Show that 1 + » +? =0. 

12. Using the result of Ex. 11, show that (1 + o)? = —1. 

13. Using the result of Ex. 11, show that (1 + o?)* = . 

14. Show that 1 + 1/m + 1/H? = 0. 

15. Show that 1 +a 4+ 1/m =0. 

16. If N is any real number, show that the three cube roots of N are YN, 

VY No, and ¥No?, where VN is the principal cube root of N. 

17. From Theorem 4 (Sec. 8.6), the formula for the mnth roots of unity is 

given by 

3602 2 Beat. 2360> 
+ 1si1n COs 

Represent the nth root for k = 1 by 9, that is, let 

36075 7 2 1360" 
@ = Cos + 1sin 

Then show that for k = 2, 3,4,---,m — 1, the successive nth roots of unity are 

given, respectively, by w2, w®, w*,:-:, wo”. Hence show that the n nth roots 

of unity are given by 1, w, w,---, #7. 

18. Using the result of Ex. 17, show that the product of any two nth roots of 

unity is also one of the nth roots of unity. 

19. Using the result of Ex. 17, show that (a) the square of each nth root of 

unity is also one of the nth roots of unity, (b) the reciprocal of each nth root 

of unity is also one of the nth roots of unity. 

20. Using the results of Exs. 18 and 19, generalize the Example of Sec. 8.7, 

that is, show that the m nth roots of unity constitute a group with respect to the 

operation of multiplication. 
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21. Show that any vector is equal to the sum of its horizontal and vertical 
components. 

22. If the vector b is the negative of the vector a, show that the horizontal and 

vertical components of b are, respectively, the negatives of the horizontal and 

vertical components of a. 

23. Show how the method of finding the sum of two vectors graphically may 

be extended to the sum of three or more vectors. 

24. Draw a figure illustrating the graphical method of obtaining the difference 
of two given vectors. 

25. Show that the sum of any number of given vectors is another vector whose 

horizontal component is equal to the algebraic sum of the horizontal components 

of the given vectors and whose vertical component is equal to the algebraic sum 
of the vertical components of the given vectors. 

26. Find the sum of the two vectors a(3 V 2 45°) and (2, 120°) both graphically 

and analytically. 

27. Find the difference a — b of the two vectors a and b of Ex. 26, both 

graphically and analytically. 

In each of Exs. 28-30, for the given function of z = x + yi, find the functions 

u(x, y) and v(x, y) where w = u(2, y) + iv(a, y). 

28. w = 22 +22 — 1. DS). i? = iie,2 320. 30, 1p 2. 
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Variation 

9.1. INTRODUCTION 

In a functional relation, say y = f(x), we have seen that a change in the 
variable x is generally accompanied by a change in the variable y, and 

vice versa. We then say that y varies as x or that x varies as y, and refer to 
this correspondence as functional variation. 

There are a great many varieties of functional variation. Here we shall 
study several specific types which we may appropriately include under the 
title of special variation. These types are special in the sense that they 
follow a definite law or relation which, in general, may be readily stated in 
words and expressed in the form of an equation. Such types occur 
frequently in geometry and physics. For example, the variation in the 
area of a triangle bears a fixed relation to any variations in the lengths of 
its base and altitude. The next section lays the ground work for the solution 
of problems involving special variation. 

9.2. DEFINITIONS AND PROPERTIES 

The ratio of one number y to another nonzero number = is defined as the 

quotient y/x. It is important to observe that a ratio is a pure number and 
as such is the quotient of like quantities. Thus the ratio of 2 ft to 3 yd is 

2)9: 
The variable y is said to vary directly as the variable x if their ratio 

is always a constant, that is, if y/x = k or 

(1) y = kx, 

where the constant k is called the constant of variation or the constant of 

proportionality. 
191 
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Thus the circumference C of a circle varies directly as the radius r since 

C = 2zxr where 27 is the constant of variation. 

The variable y is said to vary inversely as the variable x if y varies 

directly as the reciprocal of x. We then write 

Q) yat, 
x 

where k is the constant of variation. 
Thus, the intensity of illumination I upon a given surface varies inversely 

as the square of the distance d between the surface and the source of light, 
that is, | = k/d?, where k is the constant of variation. 

The two cases of special variation just considered each involve-only two 
variables. But we may also have variation involving more than 

two variables. One variable is said to vary jointly as two or more other 
variables if it varies directly as their product. Thus, w varies jointly as x, y, 

and z if w = kayz, where k is the constant of variation. Furthermore, if 

Seely” 7 : kx 
w varies jointly as x, y, and 1/z so that we may write w = ae , we also say 

z 

that w varies directly as x, directly as y, and inversely as z. This last type is 
sometimes called combined variation but it is evidently a particular example 
of joint variation. 

An important relation in joint variation is given by 

Theorem 1. /f z varies directly as x when y is constant, and if z varies 

directly as y when x is constant, then z varies jointly as x and y. 

PROOF. From the first part of the hypothesis, 

(3) 2=k,x, y constant. 

When z changes to some other value, say 2, let x change correspondingly 
to x’ so that 

(4) eK oe 

Dividing (3) by (4), member by member, we have 

(5) oe 
Zz ae 

From the second part of the hypothesis, 

(6) z=k,y, 2 constant. 

Now, while x retains its value x’ (hereafter a constant), let y change to y/’ 
(a constant). thus causing z to change from 2 to 2’ (a constant), so that 
from (6) we have 

| a (7) ee 
~ 

XR < 
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Multiplying (5) by (7), member by member, we have 

2 ay 
2! Sh 

Vi 2 or 2. — LY, 
/ , 

ey 
/ 

; z 
Replacing fe by k, a constant, we have the required relation 

eo hcg, 

This completes the proof. 

Corollary. /f 2 varies directly as x when y is constant, and if z varies 
inversely as y when x is constant, then z varies jointly as x and \|y, that is, 

x 

Z= K— 

A simple geometric example of Theorem 1 is the relation between the 
area of a triangle and its base and altitude. Thus the area varies directly as 
the base when the altitude is constant, and varies directly as the altitude 

when the base is constant, and consequently varies jointly as the base and 
altitude. 

An important physical example of the corollary to Theorem 1 is the 
relation existing among the volume V, the pressure P, and the absolute 

temperature T of a given mass of a perfect gas. Here V varies directly as T 
when P is constant, and V varies inversely as P when TJ is constant. Hence, 

: ; L ig 
in accordance with the corollary, V = RS or, as it is usually written, 

PV = RT, where R is the constant of variation. This relation is some- 

times called the characteristic equation of a gas. 

9.3. PROBLEMS IN VARIATION 

Next we consider a variety of problems in special variation. In the 
solution of such problems, we first write the given law of variation in the 

form of an equation containing the constant of variation k. If we then 
determine the value of k from the given data, we have a relation from 

which we may compute a required quantity. The process is illustrated in 

the following two examples. 

Example 1. w varies jointly as x and the square of y and inversely as 

the cube of z. If w = 8 when x = 2, y = 6, andz = 3, find w when = 5, 

y = 4, and z = 2. 
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SOLUTION. We first write the given type of variation in the form of the 

equation 

kay? 
(1) wee > 2B 

where k is the constant of variation. Substituting the given set of values 

for w, x, y, and z in this equation, we have 

eats 2 

whence k = 3 and relation (1) may be written as 

8 > 

3xy" 
23 

Hence, for = 5, y = 4, and 2 = 2, we have 

has, 7) 
23 

Example 2. The pressure P of the wind on a vertical plane surface 
varies jointly as the area A of the surface and the square of the wind 
velocity v. A wind velocity of 20 mi per hour produces a pressure of 10 lb 
on a square foot. Find the wind velocity that will produce a pressure of 

360 lb on a square yard. 

SOLUTION. The law of variation is 

(2) P = kAv?. 

Substituting the given data in (2), we have 

10 =k-1- 20%, 

whence k = 1/40 and relation (2) may be written 

1 
P= — Ar. 40 

In computing v from this last relation we must be careful to use the 
proper units, for the constant of variation k was obtained on the basis that 

v is in miles per hour, P is in pounds, and A is in square feet. Hence the 
area of 1 sq yd must be changed to 9 sq ft. Then for our required velocity 
v, we have 

60 one 
40 

3 6 

whence v? = wan = 40: 40 and v = 40 mi per hour. 
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For problems in variation it is generally desirable to obtain the constant 
of variation since we then have a complete formula for computations. 
However, in some cases the constant is not required or may be unobtain- 
able. For example, we may be interested only in the effect on one variable 
due to changes in the other variable(s) as illustrated in 

Example 3. The electrical resistance R of a wire of circular cross 
section varies directly as the length L and inversely as the square of the 
diameter d of the wire. Find the per cent change in the resistance of a 
given wire if the length is increased by 40 per cent and the diameter by 30 
per cent. 

SOLUTION. The law of variation is expressed by 

(3) R=, 

where the constant of variation k depends upon the nature of the material 
of the wire. 
We are now interested in a new value of R, say R,, which is due to 

changing L to 1.4L and d to 1.3d. This new set of values gives us the 
relation 

(4) Re k(1.4L) 

~~ (1.3d)?’ 

where k has the same value as in (3). 

From (3) and (4) we have 

2 

ie ae Ud i Ea 
R  1.69@L 1.69 

whence R, = 0.828R, that is, the resistance is decreased by 17.2 per cent, 

whatever may be the material of the wire. 

EXERCISES. GROUP 30 

1. If y varies directly as x and y = 8 when # = 4, find y when « = 7. 

2. If y varies inversely as x and y = 3 when x = 5S, find « when y = 5. 

3. If z varies directly as x and inversely as y, and if 2 = 2 when 2 = 3 and 

y = 9, find z when x = —10andy = 12. 

4. If y varies inversely as «? + landy = 2 whenz = 2, find y whenz = +3. 

5. If w varies jointly as x and y and inversely as the square of 2, and if 

w = —20whenz = 6,y =5,andz = 3, findy whenz = 8,z = 2,and w = 24. 

6. If z varies directly as (x — y)/(w + y) and z = 2 whenz =7andy =5, 

find « when y = 3 and z = 6. 
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7. y varies directly as the sum of two quantities, the first of which varies 

directly as « and the second inversely as «. If y = 3 when x = 2, and y =7 

when a = 3, find the functional relation between x and y. 

8. y varies directly as the difference of two quantities, the first of which (the 

minuend) varies inversely as « and the second inversely as o-~ lie 12ewhen 

« = 1, and y = 4 when z = 2, find the functional relation between x and y. 

9. y varies directly as the sum of three quantities, the first of which varies 

directly as x, the second directly as w, and the third directly asw. If y = 4 when 

«2 = 1, y = 14 when x = 2, and y = —10 when x = —1, find the functional 

relation between w and y. 

In each of Exs. 10-15, prove the stated theorem. 

10. If x varies directly as y and y varies directly as z, then varies directly as z. 

11. If x varies inversely as y and y varies inversely as 2, then x varies directly 

as z. 

12. If x varies directly as z and y varies directly as z, then x + y varies directly 

as z. 

13. If # varies directly as z and y varies directly as z, then V xy varies directly 

as z. 

14. If x varies directly as y, then x” varies directly as y”. 

15. If x varies directly as y and wu varies directly as v, then xu varies directly 

as yv. 

16. Establish the corollary to Theorem | of Sec. 9.2. 

17. Generalize Theorem | of Sec. 9.2 by showing that if 2 varies directly in 
turn as each one of the variables x,, v7, - - - , x, when all the remaining variables 

are constant, then z varies jointly as x1, %,---, 2. 

18. The distance traversed by a body starting from rest and falling freely in a 
vacuum varies directly as the square of the time of descent. If a body has fallen 

16 ft at the end of 1 second, find the distance fallen at the end of 4 seconds. 

19. For a body falling as specified in Ex. 18, the velocity acquired varies 
directly as the time of descent. If a body acquires a velocity of 64 ft per second 
at the end of 2 seconds, find the time required for the body to acquire a velocity 
of 160 ft per second. 

20. Boyle’s law states that at a constant temperature, the volume of a given 
mass of gas varies inversely as the pressure to which it is subjected. If a given 
mass of gas has a volume of 140 cu in. under a pressure of 20 1b, find its volume 

when the pressure is 35 lb. 

21. The time of vibration of a simple pendulum varies directly as the square 
root of its length. If the time of vibration of a pendulum 10 in. long is 1 second, 

find the time of vibration of a pendulum 40 in. long. 

22. The volume of a given mass of gas varies directly as the absolute tempera- 

ture and inversely as the pressure. If the volume is 10 cu ft when the temperature 

is 300° and the pressure is 12 lb per sq in., find the volume when the temperature 

is 320° and the pressure is 16 lb per sq in. 
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23. The safe load S of a horizontal beam of rectangular cross section when 
supported at both ends varies jointly as the breadth 6 and the square of the 
depth d and inversely as the length L between supports. A 2 by 4 in. beam 6 ft 
long and resting on the 2 in. side (6 = 2 in.) will safely support 800 lb. Find the 
safe load for the same beam when it rests on its 4 in. side (6 = 4 in.). 

24. Ohm’s law states that the current flowing through a conductor varies 
directly as the electromotive force and inversely as the resistance. If the 
resistance is decreased by 10 per cent, find the per cent change in the electro- 
motive force required to increase the current by 20 per cent. 

25. The area of the lateral surface of a right circular cylinder varies jointly as 
the radius of its base and its altitude. If the radius is increased by 20 per cent, 

find the per cent change in the altitude so that the area of the lateral surface 
remains unchanged. 

26. The lift of an airplane wing varies jointly as the area of the wing and the 
square of the plane’s velocity. Determine the per cent change in the lift if the 
wing area is decreased 25 per cent and the velocity is increased 25 per cent. 

27. The volume of a right circular cone varies jointly as the square of the 
radius of its base and its altitude. If the radius is increased by 10 per cent, find 

the per cent change in the altitude so that the volume remains unchanged. 

28. The illumination on a screen varies directly as the intensity of the source 
of light and inversely as the square of the distance from the source. Find the 
per cent change in the illumination if the intensity of the source is increased by 
20 per cent and the distance from the source is increased by 10 per cent. 

29. The frequency of vibration of a stretched string varies directly as the 
square root of the tension on the string and inversely as the product of the length 
and diameter of the string. Find the per cent change in the frequency if the 
tension is increased by 20 per cent, the length is increased by 15 per cent, and the 

diameter is decreased by 10 per cent. 

30. Newton’s law of gravitation states that the force of attraction between 
two bodies varies directly as the product of their masses and inversely as the 
square of the distance between them. If one mass is increased by 10 per cent 
and the distance between the masses is decreased by 10 per cent, find the per 

cent change in the other mass if the force is to be increased by 10 per cent. 

9.4. VARIATION OF ALGEBRAIC FUNCTIONS 

We will now consider a more general type of variation in algebraic 

functions. For example, in the relation 7? + xy + y? = 4, defining y as 

an implicit function of «, it is impossible to express the law of variation 

between the variables « and y by a comparatively simple statement, as in 

the problems of special variation discussed in the preceding sections. We 

may, however, obtain an excellent idea of the variation between x and y in 

this case from the graphical representation of the functional relation. We 
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have previously discussed the graphical representation of functions of a 

single variable, and the student will find it helpful to reread Sec. 3.9 at this 
point. We shall now continue our study of graphical representation by 
making a closer examination of a functional relation involving two 
variables, « and y, before attempting to plot it. This is termed a discussion 
of the equation of the graph and has several advantages. It often serves 
to reduce the amount of labor involved in computing the coordinates of 
points on the graph. It may also help us to avoid serious errors in the 

appearance of a graph between plotted points. Several items in such a 

discussion will now be described. 
The first item we shall consider in connection with the discussion of an 

equation is the intercepts, if any, of the graph on the coordinate axes. 
The intercept of a graph on the X-axis is the abscissa of the point of 
intersection of the graph and the X-axis. The intercept of a graph on the 

Y-axis is the ordinate of the point of intersection of the graph and the 

Y-axis. The method of obtaining the intercepts is quite obvious from the 

definitions. Since the intercept on the X-axis is the abscissa of a point 
lying on the X-axis, the ordinate of that point is zero. Hence, by setting 
y = 0 in the equation of the graph, the solution of the resulting equation 
for real values of x will give the intercepts on the X-axis. Similarly, by 
setting x = 0 in the equation of the graph, the solution of the resulting 
equation for rea/ values of y will give the intercepts on the Y-axis. It is 
important to observe that the intercepts on the X-axis represent the values 
of real zeros (Sec. 3.9). 

Another item of great importance in the discussion of an equation is 
the extent of its locus or graph. By this term we mean a determination of the 
range of the real values which x and y may assume in the equation of the 
locus. This information is useful in two respects: (1) It gives the general 
location of the graph in the coordinate plane. (2) It indicates whether the 

locus is a closed curve or is indefinite in extent. As we shall soon see, 

the range of the real values of « and y is determined simply by solving the 
given equation for y in terms of x and also for x in terms of y. 

The two items just described are illustrated in 

Example 1. Discuss the equation x* + xy + y® = 4 and plot its graph. 

SOLUTION. From the given equation, for y = 0, 2 = 4 whence x = +2, 
the intercepts on the X-axis. Similarly, by setting 2 = 0 in the given 
equation, we find y = +2, the intercepts on the Y-axis. 

Next, in order to determine the extent of the graph we solve the given 
equation for y in terms of x and also for x in terms of y. First we write the 
given equation in the form 

yy +ay+a2?—4=0 
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and consider it as a quadratic equation in the variable y, the variable 2 now 
being treated as a constant. Then by the quadratic formula we have 

ac ct — 492 1.16 
9) 3 

Y= 

—x + V16 — 32? 
meine aye 

Now, since we are dealing only with real values of x and y, it follows from 
(1) that we must have 16 — 32? > 0. By the methods of Chapter 6 (Sec. 
6.5), we find that this relation holds when z is restricted to the range of 

values given by —2V 3 <2 <4Vv3. 
Similarly, by writing the given equation in the form 

e+yxt+y—4=0 

(1) y= 

and considering it as a quadratic equation in the variable x, treating y as a 
constant, we find by the quadratic formula that 

ee Yt 16 — 3 5 

Hence, for real values, y is restricted to the range given by —4V3 <y < 

ans 
It follows, therefore, that all points on the graph must be entirely 

within (or on) a square whose center is at the origin and whose sides are 

parallel to the coordinate axes and 8\/3 units apart. This means, of 
course, that the graph is a closed curve, as shown in Fig. 35. 

In addition to the intercepts, we may obtain the coordinates of addi- 

tional points on the graph from relation (1). These values are shown in the 

table accompanying the graph (an ellipse). 

Some curves have associated with them one or more lines called 

asymptotes which are very useful in constructing the graph. For such 

lines we have the 

Definition. If, for a given curve, there exists a line such that, as a point 

on the curve recedes indefinitely far from the origin, the distance from that 

point to the line continually decreases and approaches zero, then the line 

is called an asymptote of the curve. 

In. our work we shall consider only horizontal and vertical asymptotes, 

that is, asymptotes which are parallel to the X- and Y-axes, respectively. 

Many curves have no asymptotes, but if a curve does have any horizontal 

or vertical asymptotes, they may be found by means of the solved forms 
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Figure 35 

used in determining the extent of the curve as we shall see in the next 

example. 

Example 2. Discuss the equation a?y — 2? — y = 0 and plot its graph. 

SOLUTION. It is readily seen that the only intercepts on the axes are 

given by the origin. 
The solution of the given equation for y in terms of 2 is 

(2) y= 

In (2), y is defined for all values of « except +1. Hence the graph is not a 

closed curve but is indefinite in extent. For x > 1 and a < —l, y is 

positive; for values of # in the range —1 < 2 < 1, y is negative or zero. 
As x approaches +1 or —1, y increases numerically without limit so that, 

in accordance with our definition above, the lines x = 1 and x = —1 

represent vertical asymptotes. 

The solution of the given equation for x in terms of y is 

y—1 
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In (3), x is not defined for y = 1. Also, x is complex for values of y in the 
range 0 < y < 1, and thus such values of y must be excluded. As y 
approaches | through values greater than 1, x increases numerically 
without limit; hence the line y = 1 represents a horizontal asymptote. 

The conclusions drawn from equations (2) and (3) as to the permissible 
ranges of values of x and y give us a good idea of the location of the graph 
in the coordinate plane. There are three definite regions in which the 

Y 
A 

3K 

x y 

0 0 ae 
+4 ve | 

+3 —} == + i t+ — 3 I 

+2) -# 
ebay Aone | 
+3 2 3 2 
2 
+2 4 

Eigse 

Figure 36 

locus appears: above the line y = 1 and to the right of the line x = 1; 
above the line y = 1 and to the left of the line x = —1; and below the 

X-axis and between the lines x = 1 and x = —1. The locus is evidently 

open. 
The coordinates of points may be obtained from (2) within the limits set 

above. Several such pairs of values are given in the table in Fig. 36. 
Asymptotes are shown by dotted lines in the graph of the same figure. 
The student should note the advantage of using the asymptotes of a curve, 
when they exist, in plotting the locus. Asymptotes act as guiding lines in 

the graph. 
Summarizing, we list the following five distinct steps in discussing the 

equation of a curve and plotting its graph: 

1. Determination of any intercepts on the coordinate axes. 

2. Determination of the extent of the graph. 
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3. Determination of any vertical and horizontal asymptotes the curve 

may possess. 
4. The computation of the coordinates of a sufficient number of points 

to obtain an adequate graph. 
5. The actual plotting of the locus. 

The student should always make it a particular point to see that the 
graph and discussion of an equation are in complete agreement. 

NOTE. The above discussion of an equation is far from exhaustive, but it is 

sufficient for our present purposes and the scope of this book. A more detailed 

examination and analysis of an equation are given in analytic geometry and 
calculus and include the determination of symmetry, maximum and minimum 
points, points of inflection, and other points which may be significant on the 

graph. 
We may note also that there are situations in which a set of corresponding 

observations may be available but not an equation. A graph of such observations 
is often of great value in exhibiting significant data and in drawing important 

conclusions. This occurs frequently in experimental work, statistics, and curve 

fitting. 

EXERCISES. GROUP 31 

In each of the following exercises, discuss the given equation and plot its 
graph. 

1. a? + y? = 4, 2. 9x? + 4y? = 36. 

3. 4x2 + Oy? = 36. A} Da i= 4 136; 
5. 4y? — 9a? = 36. 6. «2 + y? — 4y = 0. 

7. @ — 6x +y? =0. 8. 4a? — y? — 2y —2 =0. 

9, 82° — y = 0. 10. y = 2 + 27 — 9x — 9, 

11.2 —x —y =0. 12. «2? —y2 =0. 

13. x — y? + 9y? = 0. 14. zy —y —1 =0. 

15. «® + ay? — y2 = 0, 16. 2% + xy + y? =1. 

17 ie oy ay ee | 18. 2% + 2xy — y? = 2. 

19. x? — ay — 3y? = 1. 20. + y? —4y +4 =0. 

21. wy — dy —x% =0. 22. vy? —9x —y —1=0. 

23. xy — ay —2y —1 =0. 24, 2% — ay + 5y = 0. 

25. uy? — 4a? — 4y? = 0, 26.047 = ae 1), 

OMe We te? adie oy 28. y2 = (x — 1)(@ — 2)@ — 3). 
29, y? =a@ + 1)(@ + 2). 30, y2 ier): 
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Pp rogressions 

10.1. INTRODUCTION 

In this chapter we shall study the properties of certain special sets of 
quantities. They are special in the sense that each member or term of the 
set is formed in order according to some common law. For example, in 
the set of m numbers, 

(1) 3,5, 7,°°+,2n + I, 

the successive terms of the set are formed in order by multiplying the 
number of the term by 2 and increasing the result by 1. Thus the first 

term is 2(1) + 1 = 3, the second term is 2(2) + 1 = 5, the third term is 

23) 4-1 = 7, and so on. 

Sets of this type are so important that we have a special name for them, 
as given in the 

Definition. A sequence of numbers is an ordered set of numbers formed 
in accordance with a given law. 

The essential requirement for a sequence is that there must be a law or 

formula whereby it is possible to obtain any member of the sequence. 
Thus, if uw, represents the nth term of a sequence, then we must have an 
expression for u, in terms of n, that is, a function of n. Thus, in the 

example given above, u,, = 2n + 1, a relation which permits us to obtain 
any desired term of the sequence. 

If a sequence has a last term, it is called a finite sequence; if it has no 
last term, that is, if the number of terms is unlimited, it is called an infinite 

sequence. 

NOTE. The indicated sum of the terms of a sequence is called a series; sucha 

series is said to be finite or infinite depending on whether the sequence is finite or 
infinite. Infinite series are the subject of special study in the calculus; they are 
also of fundamental importance in the theory of functions. 

203 
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In the following sections we shall study three different types of finite 

sequences and one type of infinite sequence. 

10.2. ARITHMETIC PROGRESSION 

We first lay down the following 

Definition. An arithmetic progression is a sequence of numbers such 

that each term after the first is obtained by adding to the preceding term 
a fixed number called the common difference. 

An example of an arithmetic progression is the sequence (1) af Sec. 10.1. 
In accordance with the definition, an arithmetic progression may be 

written in the form 

(1) Qa, a,+d, a, + 2d, Gy 3d, ce 

where a, is called the first term and d is the common difference. 
If a, represents the mth term of the sequence (1), then 

the second term is a, =a,+ d, 

the third termis a, =a, + 2d, 

the fourth term is a, = a, + 3d, 

and, in general, the mth term is 

(2) a, = a, + (n — 1)d. 

We will now obtain an expression for s,, the sum of the first n terms of 
the sequence (1), which may be written 

(3) sp =a +@ +4)+ (2, + 2d) ++: 

+ (4, — 2d) + (a, — d) + a, 

Writing the terms of the right member of (3) in reverse order, we have 

(4) S, =a, + (a, —d)+ (a, —2d)+°::: 

+ (a + 2d) + (@ + d) + a. 

Adding (3) and (4), member by member, we have 

25, = (a; + Gy) + (a, + @,) + (a, + a,) b= 

+ (@ + pn) + (@, + ay) + (GQ, + Gy) = n(Q, + ay) 
whence 

(5) Sn = : (a, am Or 
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We record these results in 

Theorem 1. Ifa, is the first term, a,, the nth term, d the common difference 
and s,, the sum of the first n terms of an arithmetic progression, then we have 
the two independent relations: 

a, = a, + (n — 1)d, 

and Sy — . (a, = a): 

From the two relations of Theorem | we also have the following useful 
expression for s,, in place of relation (5): 

(6) s, = ; an a 

Theorem | may also be established by mathematical induction (Sec. 7.2). 
It is important to observe that the five elements, a,, a,, d,n, and s,, of an 

arithmetic progression are connected by two independent relations. 
Hence, if any three of these elements are known, the other two may be 
determined. 

Example 1. For the arithmetic progression 3,5,7,9,---, find the 

twelfth term and the sum of the first twelve terms. 

SOLUTION. For this progression, a, = 3, d=2, n= 12. Hence by 

Theorem 1, 

Gyn = a, + (n — 1d = 3+ 11-2 = 25, 

and So = 5 (41 +,) = = (3 + 25) = 168. 

Example 2. For the arithmetic progression in which a, = 2 and d = 3, 
find how many terms must be taken so that the sum may be 155. 

SOLUTION. In this problem we are given a, = 2, d = 3, and s,, = 155, 

and are required to find n. Since we do not know a,, it will be convenient 

to use equation (6) above for s,,, whence 

155 => [2-2 + (n— 03], 

310 = 4n + 3n? — 3n, 

$n n — 310 =—0. 

Factoring, (3n + 31)(n — 10) = 0, 

whence n= — = aL: 

Since n must be a positive integer, the required number of terms iSeLO. 
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In an arithmetic progression, the terms between any two given terms a 

and b are called the arithmetic means between a and b. The terms a and b 

are then called the extremes. Thus, in the arithmetic progression 3, 6, 9, 

12, 15, 18,---, the arithmetic means between 6 and 18 (extremes) are 

9, 12, 15. The determination of the arithmetic means between any two 

given numbers is illustrated in 

Example 3. Insert five arithmetic means between 9 and —3. 

SOLUTION. We are required to find five numbers which, with 9 and —3 
as extremes, will form an arithmetic progression. Hence we need only find 
the common difference d for an arithmetic progression of 7 terms with 
a, = 9 and a, = —3. Substituting in the relation i 

an = Y oF (n a 1)d, 

we have —3=9+4 6d, 

whence d= -—2. 

Thus the five arithmetic means between 9 and —3 are 9 — 2 = 7, 5, 3, 1, 

—1. Asa check on our work we note that by adding d = —2 to the last 
arithmetic mean —1, we obtain —3, the next term and extreme. 

The single arithmetic mean between two given numbers is called their 
arithmetic mean. Let A be the arithmetic mean of two given numbers a and 
b, so that a, A, b are in arithmetic progression. Then, for their common 

difference, we have 

=A—a=bh-A, 

whence 2A=a+b, 

and Ye ar 
2 

that is, the arithmetic mean of two given numbers is equal to one half their 
sum. It is also frequently called their average. 

EXERCISES. GROUP 32 

In each of Exs. 1-6, for the given arithmetic progression, find a, and s, for the 
indicated number of terms. 

ON OSeeratoniiletennnss 2. —3, —1,1,-:-:-to 9 terms. 

Bao aco tOmLAastentnse 4. 10, 9, 8,--+to 20 terms. 

3: —8, =42) —3.-7 “10 16 terms. 996.03) 2 een aternis: 

In each of Exs. 7-14, three of the five elements of an arithmetic progression 
are given. Find the other two elements. 

Us Gh SS, Gl S = 3, 7 = B. 8. ay = —3, a, = 8, Sn = 30. 
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9. a = 11, d = —2, 5, = —28. 10: a, = 29, s5 = 225, d'= 2. 
11. a, = 30, a, = —10, 5, = 90. 12.n=11,d=2, 5, = —44, 

13. a, = 45, d = —3,s, = 357. 14. a, = 9, d =3)'s, = —66. 
15. Find the sum of all positive multiples of 3 which are less than 20. 
16. Find the sum of all positive multiples of 5 which are less than 100. 

17. Find the arithmetic mean of 7 and —11. 

18. The arithmetic mean of two numbers is 6. If one number is 21, find the 
other number. 

19. Insert five arithmetic means between —4 and 8. 

20. Insert seven arithmetic means between 5 and 1. 

21. Insert five arithmetic means between —12 and 4. 

22. Insert two arithmetic means between 1 + V2 and 1 —2V2. 

23. The third term of an arithmetic progression is —3 and the eighth term is 
2. Find the common difference and the sixth term. 

24. The fourth term of an arithmetic progression is 11 and the eleventh term 

is 21. Find the first term and the sum of the first fifteen terms. 

25. The fifth term of an arithmetic progression is 2 and the ninth term is —10. 

Find the seventh term and the sum of the first twelve terms. 

26. The sixth term of an arithmetic progression is —9, and the twelfth term 

is —33. Find the common difference and the sum of the first ten terms. 

27. Establish Theorem 1| of Sec. 10.2 by mathematical induction. 

28. If n arithmetic means are inserted between a and b, show that the common 

difference is given by d = (b — a)/(n + 1). 

29. Find the sum of the first m positive odd integers. 

30. Find the sum of the first » positive even integers. 

31. Find the sum of the first 2m positive integers. Check the result by 
combining the results of Exs. 29 and 30. 

32. Find the middle term of the arithmetic progression of Ex. I. 

33. Find the middle term of the arithmetic progression of Ex. 2. 

34. Find the two middle terms of the arithmetic progression of Ex. 3. 

35. Find the two middle terms of the arithmetic progression of Ex. 4. 

36. Find the middle term of an arithmetic progression of 1 terms having a, as 

its first term and d as its common difference, n being odd, and show that it is 

equal to s,,/n. 

37. Find the two middle terms of an arithmetic progression of terms having 

a, as its first term and d as its common difference, being even, and show that 

their sum is equal to 2s,,/n. 

38. Use the results of Exs. 36 and 37 to verify the results of Exs. 32-35. 

30% Findithe sum of the sequence 1; —3, 5, —7;9. —11,--- to 2n terms. 

40. Find the sum of the sequence 1, —2,3, —4,5, —6,:°-+ to 2m terms. 
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41. Show that the sum of any 2” + 1 consecutive integers is divisible by 

ane. 

42. If each term of an arithmetic progression is multiplied by the same non- 
zero quantity, show that the resulting sequence is also an arithmetic progression. 

43. A freely falling body travels approximately 16 ft the first second, and in 
each second thereafter 32 ft more than in the preceding second. A stone is 
dropped from the top of a tower and reaches the ground in 6 seconds. Find the 
height of the tower and the distance the stone falls during the last second. 

44. The sum of three numbers in arithmetic progression is 21 and the product 
of the first and third number is 33. Find the numbers. Hint: Represent the 
numbers by a — d, a, a + d. 

45. A number consists of four digits which are in arithmetic progression. The 
sum of all the digits is 16 and the sum of the last two digits is 12. Find the 

number. 

10.3. GEOMETRIC PROGRESSION 

The student will note a very close analogy between this and the preceding 
section. We first lay down the following 

Definition. A geometric progression is a sequence of numbers such that 
each term after the first is obtained by multiplying the preceding term by 
a fixed nonzero number called the common ratio. 

An example of a geometric progression is 1, 4, 4, $,°-- 

In accordance with the definition, a geometric progression may be 
written in the form 
(1) EPR TIO CR 

where a, is called the first term and r is the common ratio. 
If a, represents the nth term of the sequence (1), then a, = ayr, a, = a,r?, 

and, in general, the nth term is 

(2) Gare. 

We will now obtain an expression for s,,, the sum of the first n terms of 
the sequence (1), which may be written 

(3) Sy = a a ar ae ar? a ge ca ar" ae art}, 

Multiplying both members of (3) by r, we obtain 

(4) rs, = ar -- ar Sc Qn ae ar aE ar”. 

Subtracting (4) from (3), member by member, we obtain 

Sy, — 1S, = ay — ar", 

or sal — r) = a(1 = 7), 
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whence 

pei te) 
(5) {os neal: 

1l—r 

We record these results as 

Theorem 2. /f a, is the first term, a,, the nth term, r the common ratio, 
and s,, the sum of the first n terms of a geometric progression, then we have 
the two independent relations: 

ie = ar” oy 

a,(1 = = =) 

and S, = Us : fhe = I 
—r 

From the first relation of Theorem 2, we have ra, = a,r” which, 

substituted in the second relation, gives us the following useful expression 
in place of relation (5): 

(6) a= a ee eL, ; peat: 
L—r 

Theorem 2 may also be established by mathematical induction (Sec. 7.2). 
It is important to observe that the five elements, a,, a,, r,n, and s,, of a 

geometric progression are connected by two independent relations. Hence, 
if any three of these elements are known, the other two may be determined. 

Example 1. For the geometric progression 1, 2, 4,---, find the seventh 

term and the sum of the first seven terms. 

SOLUTION. For this progression, a, = 1, r=2, n=7. Hence, by 

Theorem 2, 

ah ee? 4 

| | = NO Sy and Ss, = 

Example 2. For the geometric progression whose first term is 4, whose 
last term is 302, and the sum of whose terms is 834, find the common ratio 

and number of terms. 543 

SOLUTION. In this problem we are given a, = 4, a, = 303 = rae and 

S, = 834 = = , and are required to find rand n. Since r and n are both 

unknown, we will use relation (6) above: 

= ad, — Tra, 

1—r 

ane! 4—- age r 
Substituting, 665ie0 8 
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Multiplying by 8(1 — 1), 665 — 665r = 32 — 243r, 

whence —422?r = —633 and r= : F 

Substituting in a, = ar”, 
ih 

we have cat = 4(3) ; 
8 2 

243 ar 
whence eres gail ad : 

By) 2) 

5 (Oil 

and (3) = (3) : 
2! 2 = 

Hence p= ils 5 ane! 7 = © 

In a geometric progression, the terms between any two given terms a and 

b are called the geometric means between a and b. The terms a and 6 are 

then called the extremes. The determination of the geometric means 

between any two given numbers is illustrated in 

Example 3. Insert five geometric means between } and 16. 

SOLUTION. We are to find 5 numbers which, with + and 16 as extremes, 

will form a geometric progression. Hence all that we must determine is the 
ratio r for a geometric progression of 7 terms with a, = } and a, = 16. 

Substituting in the relation 
a, = ar, 

we have 16 == 4r°, 

whence f° ==. 64, 

and pies. 

Hence the 5 geometric means are 4:2 = $,$-2 = 1, 2,4, 8. Asa check 

on our work, we note that by multiplying the last geometric mean 8 by the 
common ratio 2, we obtain 16, the next term and extreme. 

NOTE |. We have seen previously (Sec. 8.6, Theorem 4) that every number 
(except zero) has exactly n distinct nth roots. Hence, in the preceding example, 

there are actually six distinct values of r and therefore six distinct sets of 

geometric means. However, it will be sufficient for our purposes to restrict any 
geometric progression so that, unless otherwise specified, the terms are both 

real and unique. This simplicity is obtained in the preceding example by taking 
only the principal root (Sec. 2.13) of 64 for the value of r. 

A single geometric mean between two given numbers is called their 
geometric mean. Let G be a geometric mean of two given numbers a and b 
so that a, G, and b are in geometric progression. Then, for their common 
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ratio, we have 

Gap 
I fe 

a G 

whence G? = ab, 

and G = +,/ab, 
that is, a geometric mean of two given numbers is numerically equal to the 
square root of their product. It is also called their mean proportional. 

NOTE 2. In Note | above we agreed that, unless otherwise specified, the terms 
of a geometric progression are to be considered both real and unique. Hence, 
for a geometric mean G of a and b to be real, a and b must agree in sign. Further- 
more, for a unique value of G, we will agree to give G the common sign of a and 

b. Thus the geometric mean of 3 and 48 is 12; the geometric mean of —3 and 

—48 is —12. Note that in both of these cases, r = 4, the principal square root 

of 16. 

EXERCISES. GROUP 33 

In each of Exs. 1-6, for the given geometric progression, find a, and s, for the 

indicated number of terms. 

1, 2,.4,'8,-- - to 10 terms. Ds Bos 1D, > © o4K@) 7 Sa, 

331345 165-- = to 7 terms: 4. 3, —1,4,--- to 8 terms. 

5. 48, 24, 12,--- to 6 terms. 6. 2, —%,2,--+to 7 terms. 

In each of Exs. 7-12, three of the five elements of a geometric progression are 

given. Find the other two elements. 

Wa =41, a, = 2, r= 8. 8. a, = 2, ay) = —1024, n = 10. 

OG, = 2,0, = 64)n = 6. 100 a4 0129, r= 3,45, =.1093; 

11. 7 = 2, so = 635,n = 7. 12. n= 6,7 =—}, a; = 16. 

13. Insert three geometric means between 16 and ,. 

14. Insert four geometric means between } and —27. 

15. Insert five geometric means between 4 and 8. 

16. Insert three geometric means between 2 and 8. 

17. Find the geometric mean of x? and y?. 

18. The geometric mean of two positive numbers is 4. If one of the numbers 

is four times the other, find the numbers. 

19. The third term of a geometric progression is 3 and the seventh term is ,%. 

Find the common ratio and the first term. 

20. The second term of a geometric progression is —18 and the fifth term is 

16, Find the sixth term and the sum of the first five terms. 

21. The third term of a geometric progression is 9 and the sixth term is 243. 

Find the seventh term and the sum of the first six terms. 

22. Establish Theorem 2 of Sec. 10.3 by mathematical induction. 
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23. The formulas for s,, as given by relations (5S) and (6) of Sec. 10.3, are not 

valid for r = 1. Obtain the formula for the sum of n terms of a geometric 
progression whose first term is a; and whose common ratio r = 1. 

24. If each term of a geometric progression is multiplied by a nonzero 
constant, show that the resulting sequence is also a geometric progression. 

25. Show that the alternate terms of a geometric progression form another 
geometric progression. 

26. If each term of a geometric progression is subtracted from the following 
term, show that the successive differences form another geometric progression. 

27. If each term of a geometric progression is raised to the same positive 
integral power, show that the resulting sequence is also a geometric progression. 

28. Show that the reciprocals of the terms of a geometric progression also 
form a geometric progression. 

29. Each stroke of an air pump removes one tenth of the air in a tank. At the 
end of eight strokes, find the fraction of the air which remains in the tank. 

30. The bob of a pendulum moves through a distance of 16 in. during the 
first swing. In each following swing, the bob moves through of the distance of 
the preceding swing. Find the total distance traveled by the bob in six swings. 

31. A cask contains 36 gal of pure alcohol. Six gal are drawn out and replaced 
by water. If this operation is performed six times, find the amount of pure 
alcohol left in the cask. 

32. A rubber ball falling from a height of 64 ft rebounds one fourth of the 
preceding height after each fall. Find the total distance traversed by the ball 
when it strikes the ground for the sixth time. 

33. The arithmetic mean of two unequal positive numbers is 5 and their 
geometric mean is 4. Find the numbers. 

34. The sum of three numbers in arithmetic progression is 15. If these 
numbers are increased by 2, 1, and 3, respectively, the sums are in geometric 

progression. Find the numbers. 

35. If three different numbers a, b, and ¢ are in geometric progression, show 

that 1/(b — a), 1/2b, and 1/(6 — c) are in arithmetic progression. 

10.4. HARMONIC PROGRESSION 

In this section we consider a special sequence of numbers for which we 
have the 

Definition. A harmonic progression is a sequence of numbers whose 
reciprocals form an arithmetic progression. 

I eee I 

Ak Goan 
2, 4, 6,°°*,2n,°°: is an arithmetic progression. 

Thus, the sequence 5? ,** +18 a harmonic progression since 
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It is evident from this definition that problems in harmonic progression 
may be readily solved by considering the corresponding arithmetic 
progression, as shown in the examples below. It should be noted, however, 
that there are no general formulas for the nth term and the sum of n terms 
of a harmonic progression. 

Example 1. The second term of a harmonic progression is } and the 
eighth term is #,. Find the fifth term. 

SOLUTION. We solve this problem by considering the corresponding 
arithmetic progression in which a, = 5 and ag = 23. Hence, by the 
formula of Sec. 10.2, a, = a, + (n — 1)d, we have 

5=a,+d, 

and 23 = a, + 7d. 

By subtraction, 18 = 6d, whence d = 3 and a, = 2. Hence, a; = a, + 

4d =2+4-3= 14, and the required fifth term of the harmonic pro- 

gression is ;4. 

In a harmonic progression, the terms between any two given terms a and 

b are called the harmonic means between a and b. The determination of the 

harmonic means between any two given numbers is illustrated in 

Example 2. Insert four harmonic means between 7 and —4. 

SOLUTION. By the methods of Sec. 10.2, we readily find the four arith- 
metic means between 7 and —3 to be 5, 3, 1, and —1. Hence, from the 

reciprocals of these numbers, we have the four required harmonic means, 

2,4,1, and —1. 

The single harmonic mean between two given numbers is called their 

harmonic mean. Let H be the harmonic mean of two given numbers a and 

b so that a, H, b are in harmonic progression. Hence, 7 WS are in 

arithmetic progression for whose common difference we have 

Abn See ees 
jal @ b HH’ 

whence acy Na pie any 
jf @ b ab 

life ab 

2 b+a 

and i Ble 
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We have previously seen (Sec. 10.2) that the arithmetic mean A of two 

given numbers a and 3 is given by 

Hence, to avoid a very common error the student should note that the 
harmonic mean of two given numbers is not equal to the reciprocal of their 

arithmetic mean. 
There are several interesting relations among the arithmetic, geometric, 

and harmonic means of two given numbers. For example, the student may 

readily show that the geometric mean of two numbers is also the geometric 
mean of their arithmetic and harmonic means. It is also left as an exercise 
to the student to show that, for two unequal positive numbers, their 
arithmetic mean is greater than their geometric mean, which, in turn, is 

greater than their harmonic mean. For convenience these properties of the 

various means are recorded in the following theorem. 

Theorem 3. Let A, G, and H represent, respectively, the arithmetic, 

geometric, and harmonic means of two given unequal positive numbers a and 
b. Then 

A ; C= ./ab, He _2ab_ ; 

2 a+b 

and A, G, and H are connected by the two relations 

(GA vWeb AG > fH: 

EXERCISES. GROUP 34 

co|bo 
1. The third term of a harmonic progression is $ and the sixth term is 

Find the ninth term. 

2. The second term of a harmonic progression is 3 and the fifth term is 
Find the eighth term. 

3. The first three terms of a harmonic progression are 4, 3, #. Find the sixth 
and eighth terms. 

(ohio) 

4: The first three terms of a harmonic progression are —4, —1, 1. Find the 
ninth term. 

5. Insert three harmonic means between 2 and 1. 

. Insert four harmonic means between —} and 4. 6 

7. Insert five harmonic means between 7 and 1. 

8. Find the harmonic mean of 3 and 9. 

9 . Find the harmonic mean of « + y and a — y. 
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10. The arithmetic mean of two numbers is 8 and their harmonic mean is 6. 
Find the numbers. 

11. The harmonic mean of two numbers is 15 and their arithmetic mean is 4. 
Find the numbers. 

12. The harmonic mean of two numbers is 2 and their geometric mean is 6. 
Find the numbers. 

13. Determine the value of x so that the three quantities x, x — 6, and x — 8 

may be in harmonic progression. 

14. Determine the values of x and y if x, 4, y are in arithmetic progression and 

y, 3, x are in harmonic progression. 

15. Three numbers are in harmonic progression, the third being equal to 

twice the first. If the first number is diminished by 1, the second is increased by 4, 

and the third is increased by 5, the results are in geometric progression. Find 
the three numbers. 

16. For Theorem 3 (Sec. 10.4), prove that G? = AH. 

17. For Theorem 3 (Sec. 10.4), prove that A > G > H. 

18. If a, b, c are in arithmetic progression and b, c, d are in harmonic pro- 

gression, show that ad = be. 

19. If H is the harmonic mean of a and b, show that 

1 1 1 Fe 1 

H-a fect ge Ine 

20. If a?, b?, c® are in arithmetic progression, show that b + c,c + a,a +b 

are in harmonic progression. 

21. If a, b, c are in harmonic progression, show that 

a b @ 

b+ec’oatcatd 

are also in harmonic progression. 

22. If a, b, c are in harmonic progression, show that 

2a—b b 2c —b 

amo oe 
are in geometric progression. 

23. If a, b, c are in harmonic progression, show that a, a — ¢, a — b are also 

in harmonic progression. 

24. If ais the arithmetic mean of 5 and c, and if b is the geometric mean of a 

and c, show that c is the harmonic mean of a and b. 

25. If a, b, c are in harmonic progression, show that 

a b @ 
| —_—_, and ————_ 

b+c—a’ct+ta-—b’ Re AAG 

are also in harmonic progression. 
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10.5. INFINITE GEOMETRIC PROGRESSION 

Heretofore we have considered only finite progressions. We will now 

investigate an infinite geometric progression, that is, one in which the 
number of terms is unlimited. For this purpose we will require an under- 

standing of the term /imit, a concept of fundamental importance in 

mathematics. Accordingly, we lay down the following 

Definition. The variable x is said to approach the constant k as a limit 
provided that the numerical or absolute value of their difference, |x — kl, 

becomes and remains less than any preassigned positive quantity, however 

small. 
The limiting process thus defined is conveniently indicated by the 

notations 
lima =k or z= k, 

the first being read “‘the limit of x is k’’ and the second as “‘x approaches k 
as a limit.” 

NOTE 1. There is a more precise definition of limit than that given above; it 
will be encountered by the student when he later begins his study of the calculus. 
However, the present definition will suffice for our purposes. 

The student has previously seen illustrations of the limit concept in 
elementary mathematics. Thus, consider the perimeter of a polygon 

inscribed in a given circle. If we keep increasing the number of sides, the 
perimeters of the resulting polygons approach closer and closer to the 

circumference of the circle. That is, by increasing the number of sides 
sufficiently, we can make the numerical value of the difference between the 
perimeter and the circumference less than any preassigned positive quan- 
tity, however small. In this example, the variable x of our definition is 
represented by the various values of the perimeter P, and the constant k is 
represented by the circumference C. We may then write 

(1) lim P = C. 

We next consider the situation where a variable increases without limit. 
A simple example is the case of any infinite sequence where the number of 
terms is unlimited. We indicate this fact by writing n > 00, which is read 
““n increases without limit.”’ 

NOTE 2. It is important for the student to understand that the symbol oo is 
notanumber. Although it is correct to read the notation « — 1 as “‘x approaches 
1,” the student should avoid the tendency to read the notation n > 00 as “‘n 
approaches infinity.” This notation is correctly read as stated above; it may 
also be read as ‘‘n increases beyond bound” or as “‘n becomes infinite.”’ 
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The limit concept is very often associated with the variations of two 
related variables. For example, consider the functional relation 

a lcat 

1 

Suppose that x approaches 1 as a limit. It is then easy to see that y 
approaches } as a limit. We then write 

1 1 

y 

lim — 
el 1 + x D 

which is read “the limit of 1/(1 + x), as « approaches 1, is }.” 

In our previous example leading to relation (1) above, let P,, represent 
the perimeter of a polygon of n sides inscribed in a given circle of circum- 
ference C. If we now increase the number of sides n without limit, we may 
write 

fin PG, 
n> oO 

which describes the limiting process more precisely than relation (1). 
Let us now consider the functional relation 

1 

{<er 
Y= 

Suppose that 2 approaches | as a limit. It is then evident that y increases; 

in fact, by taking x sufficiently close to 1 we can make y exceed any assigned 
number, however large. We then say that as x approaches 1, y increases 
without limit and indicate this situation by writing 

1 
lim = 0. 
zo1l— 2 

Paradoxical as it may appear, this statement is a symbolic way of saying 
there is no limit. As previously noted, the symbol oo is not a number, and 
the statement means that as x approaches 1 in value, the expression 

1/(1 — 2) increases without limit or becomes infinite. 

We will now consider several limits which are required for the infinite 

geometric progression whose first term is a, and whose common ratio 1s r. 

First, suppose that r is numerically greater than 1, that is, |r| > 1. Then if 

p isa positive number, we may write 

rl=1+p, 
whence [pel (1 bi) al np oP, 

where P is a positive number representing the sum of the remaining terms 

of the binomial expansion (Sec. 7.4). Now if nm increases without limit, 
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np increases without limit, and hence, from the last relation above, 

lim |77 |=" oo, 
n>o 

and also 

(2) lim |a,r”| = 00, Ka fea 
n> oo 

Next, consider that |r| < 1, that is, -1 <r <1. Then if p isa positive 

number, we may write 

whence [r"| = ee ee ee ee = : 
Ue inp is GY 

Now if n increases without limit, np increases without limit, and 1/np 
approaches the limit zero. Hence, from the last relation 

lim |r”| = 0, 
n> oO 

and also 

(3) lim |a,r”| = 0, a eae 
no 

From Theorem 2 (Sec. 10.3), for a geometric progression whose first 
term is a, and whose common ratio is r, the sum of the first 7 terms is given 

by 
n 

(4) gh Ey 
1—r 

We are now interested in the effect on s,, produced by increasing the number 
of terms n without limit, thus giving us an infinite geometric series (Sec. 
10.1, Note). We shall see that under certain conditions, s,, may increase 

without limit or may oscillate between two values; the series is then said to 
diverge. However, under other conditions s, may approach a definite 
limit; this limit is defined as the sum of the series which is then said to 
converge. 

Thus, consider the infinite geometric series 

1 pall 1 
-+- ec: 

D ne Teed 

We may easily show by means of the formula (4) that for n terms of this 
series, 

(5) 1+ ayes 
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Now as n increases, 1/(2"~1) approaches zero and s,, approaches 2. We 
represent this by the statement 

Slim's. 2. 
n> oc 

that is, the limiting sum of the infinite series (5) is 2, and hence the series is 
convergent. Note that the word “sum” here does not have the ordinary 
meaning of a sum as the result of adding a finite number of quantities. 

NOTE 3. The student will find it an interesting exercise to illustrate series (5) 

geometrically by considering the line segment of length 2 units and having its 
end points at the origin O and the point P on the positive X-axis. Let P, be the 

midpoint of OP, P, the midpoint of P,P, P; the midpoint of P,P, and so on. 

Then interpret the meaning of the length of OP,, and the position of the point P,, 

as n takes on the values 1, 2,3,::-. 

We will now consider the effect on s,, for various values of the ratio r. 

Formula (4) does not define s, for r = 1. In this case the series assumes 

the form: 

c= 4 2 4 ai — G5, 

whence oe ST anes ees 
n~ oO 

that is, s,, increases without limit and the series is divergent. 
lfr = —I, the'series assumes the form 

Se Op = Ge ay Oe 

If nis odd, s, = a,; if nis even, s, = 0. Since this is true for all values of 

n, it follows that s, oscillates between a, and 0. Such a series is termed an 

oscillating series; it is divergent. 
We now consider values of the ratio r other than +1. For this purpose 

we write formula (4) in the form: 

ay ayr (6) Sn = Ee ee | 

n ar 
If |r| > 1, it follows from (2) that lim = Aa whence, from (6), 

n—- CO 

Se lifts == «CO, 
nm CO 

and the series is divergent. 

Finally, we consider the case when |r| <1. From (3) it follows that 
n cee 

lim —*— = 0 whence, from (6), 
— jie 

no : ay 
Salim Ss; = 5 fa) =a 

n> oe 1—r 

and the series is convergent. 
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We record the preceding results as 

Theorem 4. The infinite geometric series whose first term is a, and whose 

common ratio is r is convergent for all values of r such that |r| < 1, and its 

sum is given by the relation 

: a 
s, =lims, = —, trieaii 

n> oo 1 ea (i 

where n represents the number of terms. 

For all other values of r, the series is divergent. 

Example 1. A rubber ball is dropped from a height of 16 ft. If it 

rebounds one fourth of the height from which it falls, find the limiting 

value of the total distance traversed by the ball before theoretically 

coming to rest. 

SOLUTION. Actually, due to resistance, the ball will come to rest in a finite 

time, but after a sufficient number of bounces, the distance traversed will 

be very close to the limiting value. 
The limiting value of the total distance traversed is the sum of two 

infinite geometric progressions: 
Falls: 16,4) let 

Rebounds: 4, 1,4,°°- 

By Theorem 4, this limiting value is given by 

Meee eerie 
i1—i 1-4 5} 3 

An example of an infinite geometric progression is a repeating decimal. 
Such a decimal is nonterminating and, from some point on, one digit or a 
group of digits is repeated without end. Thus, examples of repeating 
decimals and their equivalent infinite geometric series are 

3 
ere erty ewe hues 

10 100 1000 

OP ae) 
and 2.151515--:=2 oie aed te 

10? tot 10) 

A repeating decimal may be abbreviated by placing dots over the repeated 
digits. Thus, the two examples above may be written as 0.3 and 2.15, 
respectively. It may be proved that every repeating decimal represents a 
rational number. 

Example 2. Find the rational fraction equivalent to the repeating 
decimal 1.26. 
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SOLUTION. We set aside 1.2, which is not repeated. Then for 0.06 we 
have 

: 6 6 6 
Oe ee re a roe 

102 + 108 + tot ‘ 

where a, = 0.06 and r = 0.1. 

Hence, So = 

and ng ee ee re ee ie 
55 150 15 1s 

This result is readily checked by actual division. 

EXERCISES. GROUP 35 

In each of Exs. 1-6, find the (limiting) sum of the given infinite geometric 
progression. 

11236364, Dea 3. 1 gate, 

ee aa et Bote AR 2 OR ON IL Ay 

= V5 1 1 
Se 65 ee 5 cf waneG (eee ne OU; 

In each of Exs. 7-14, find the rational fraction equivalent to the given repeating 
decimal, and check the result. 

04: B25: 9. 0.35. 10) 1.212 
10123: 123.201 13. 0.4512. 14, 1.037. 
15. Verify the following method for obtaining the rational number equivalent 

to a given repeating decimal in which only one digit is repeated. Let = the 
given repeating decimal. Multiply by 10, thus obtaining 10x = 10 times the 
given decimal. Subtract the first relation from the second, thus obtaining 
9x = a terminating decimal. Divide by 9 and simplify if necessary; the result is 

the required rational number. Illustrate the method by solving Ex. 7. 

16. Extend the method of Ex. 15 to the case of a repeating decimal in which 

two digits are repeated. Illustrate the method by solving Ex. 9. 

17. Extend the method of Ex. 15 to the case of a repeating decimal in which 

three digits are repeated. Illustrate the method by solving Ex. 14. 

18. A rubber ball dropped from a height of 27 ft rebounds one third of the 
height from which it falls. Find the limiting value of the total distance traversed 

by the ball before theoretically coming to rest. 

19. A rubber ball dropped from a height of 25 ft rebounds one fifth of the 

height from which it falls. Find the limiting value of the total distance traversed 

by the ball before theoretically coming to rest. 
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20. The bob of a pendulum moves through a distance of 8 in. during the first 
swing. In each following swing, the bob moves through § of the distance of the 
preceding swing. Find the limiting value of the total distance traversed by the 

bob before theoretically coming to rest. 

21. The limiting sum of an infinite geometric series is 21}. If the first term is 

16, find the fifth term. 

22. The limiting sum of an infinite geometric series is 81. If the ratio is &, 

find the seventh term. 

23. From the definition of limit, show that any constant may be regarded as 
its own limit. 

24. By actual division, show that a,/(1 — r) gives an infinite geometric series 
whose first term is a, and whose common ratio is r. : 

25. Ina convergent infinite geometric series, show that the nth term approaches 
zero asn — 0, Note. This is a necessary but not a sufficient condition for the 

convergence of any infinite series. 

26. Carry out the details of the exercise described in Note 3 (Sec. 10.5). 

27. For the infinite geometric series 1 + 4 +4 +--+, determine the least 

number of terms whose sum differs from 2 by less than 0.001. 

28. If a, b, ¢ are in arithmetic progression, show that a%(b + c), b*(c + a), 
c(a + 5) are in arithmetic progression. 

29. If (a — b)/(6 — c) = a/x, show that a, b, c are in arithmetic, geometric, or 

harmonic progression, according as x = a, b, or c, respectively. 

30. If a, b, c are in arithmetic progression, b, c, dare in geometric progression, 

and c, d, e are in harmonic progression, show that a, c, e are in geometric 

progression. 
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‘Theory of equations 

11.1. INTRODUCTION 

We have now arrived at a very important stage in algebra, for we are 
about to consider the problem of determining the roots of algebraic 
equations of any degree—one of the primary objectives in the study of 
algebra. In particular, this chapter will confine itself to the rational 
integral equation of degree n: 

(1) age” + az" 4+ ag" * + ---+4,_.7+4+ a, = 0, a) >= 0, 

where 7 is a positive integer and the coefficients ap, a,,++-,a, are any 

constants. It is convenient to refer to ao, the coefficient of the term of 
highest degree, as the Jeading coefficient. 

For n = 1, equation (1) is the /inear equation studied in Chapter 4; for 
n = 2, equation (1) is the quadratic equation studied in Chapter 5. Hence, 
in this chapter, we shall consider equations of type (1) for which n > 3. 

We have seen previously that the solutions of linear and quadratic 

equations may be expressed in terms of their coefficients by means of a 
finite number of one or more of the six operations of algebra (Sec. 4.4, 
Theorem 1; Sec. 5.4, Theorem 1). Such a solution is called an algebraic 

solution (Sec. 1.6, Fundamental Definition); it is also called a solution by 

radicals. There are algebraic solutions of equation (1) for n = 3, the 

cubic equation, and for n = 4, the quartic or biquadratic equation; these 
solutions, however, are somewhat involved and not very practical for 

ordinary use. Consequently, they will not be considered here. Further- 
more, it is shown in advanced treatises that for n > 5, the general rational 

integral equation (1) has no algebraic solution. (See Sec. 3.6, Note 2.) 
Since we do not intend to use the algebraic solutions of equation (1) for 

n = 3 and n = 4, and since there is no algebraic solution for n > 5, the 

question naturally arises, how do we propose to solve an equation of 

223 
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degree higher than 2? Frankly, the answer is that we attempt to guess or 

approximate to a desired degree of accuracy the values of the roots and 

then prove or disprove our conjectures by actual substitution in the given 

equation. Because the root of an equation may range over an unlimited 

number of values, it is evident that if this method is to be of any practical 

use, we must be able to confine the field of our conjectures within reason- 

able limits. Thus, in the sections which follow, we shall show how it is 

possible, under certain conditions, to determine the number, nature, and 

possible values of the roots before attempting the complete solution of a 

given equation. 

11.2. THE GENERAL PROBLEM 

It appears from the preceding section that the full discussion of the 
properties and solution of the general rational integral equation is a 
problem of considerable magnitude. In fact, entire treatises are devoted 
exclusively to the theory of equations. Having only a single chapter at 
our disposal, we can merely give an introduction to this fascinating 
subject. However, we shall select those topics which will be most useful to 
the student, both for his present mathematical needs and those of the 
immediate future. Later, after further training, particularly in the calculus, 
the student will be in a position to pursue this subject further in advanced 
treatises. 

In this section we shall indicate briefly the nature and scope of this 
chapter. While the coefficients in the general equation are constants and as 

such may be any numbers, real or complex, we shall, in general, consider 
the solution of only those equations whose coefficients are real. Further- 
more, for any given equation we shall confine our attention initially to the 
determination of any real roots, rational and irrational, and then, if 
possible, find any complex roots by previous methods. In the sections 
which follow, each theorem and procedure considered is presented with 
these objectives in view. 

For convenience, it shall be understood hereafter that the general 
rational integral equation (1) of Art. 11.1 will be represented by the equa- 
tion f(x) = 0, where the left member f(x) is the polynomial in a of degree n. 

11.3. THE REMAINDER AND FACTOR THEOREMS 

We now consider a simple but extremely important result known as the 
remainder theorem. Before formally stating and proving this theorem, we 
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will illustrate its meaning by an example. Thus, if we divide the polynomial 
J (x) = 3a — 4a? — 2x — 7 by x — 2, using ordinary algebraic division 
(Sec. 2.7), we obtain a quotient Q(x) = 3x2 + 2x + 2 and a remainder 
R= —3. Also, if we substitute 2 for 2 in the original dividend f(x), we 
find f(2) = 3(2)? — 4(2)? — 2(2) — 7 = —3. The fact that f(2) and the 
remainder R are both equal to —3 may, of course, be merely a coincidence 
in this particular case. But we shall now show that this result is true in 
every case by establishing 

Theorem 1. (Remainder Theorem). If the polynomial f(x) is divided by 
x — r, where r is a constant free of x, the remainder is equal to f(r). 

PROOF. We first write the polynomial f(x) in the form 

(1) S@) = Ag” i ax" 7 tas aR An1& =F an» a ra 0. 

Then 

(2) iG) > ayr”" a ayr"* aie a Gyr =F ay. 

Subtracting (2) from (1), member by member, we have 

Ca (A es) Tai tt a (2 — 7): 

Now it may be shown by mathematical induction that for every positive 
integral value of n, x” — r” is exactly divisible by x — r. (See Ex. 6, Group 
24, Sec. 7.3.) Hence, from (3), it follows that f(x) — f(r) is exactly divisible 

by « — r. Say that as a result of such division, the quotient obtained is the 
polynomial Q(x). Then we may write 

f(x) — f(r) = ( — r)Q@), 

whence ie) = — OG) Ar), 

and pe O(a) + aAt)S ; 
“2—rT 2—r 

that is, the division of f(x) by x — r gives a remainder equal to f(r), as was 

to be shown. 

By means of the remainder theorem we can establish another important 

and useful result given by 

Theorem 2 (Factor Theorem). If r is a root of the rational integral 

equation f(x) = 0, then x — r is a factor of the polynomial f(x), and con- 

versely. 

PROOF. Since r is a root of f(x) = 0, it follows by the definition of a root 

that f(r) =0. But by the remainder theorem, the division of f(x) by 
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a —r gives a remainder R = f(r). Hence R = 0, that is, the division is 

exact, and a — ris a factor of f(a). 

Conversely, suppose that « — r is a factor of f(x). Then x —r is an 

exact divisor of f(x) and the remainder R = 0. Hence, by the remainder 

theorem, R = f(r) = 0, and r is a root of f(x) = 0. 

NOTE. We now see that Theorem 4 (Sec. 5.5) for a quadratic equation is a 

special case of Theorem 2. 

Example 1. Without actually performing the division, find the 
remainder when the polynomial f(x) = at + 523 + 52? — 4% —7 is 

divided by x + 3. 

SOLUTION. By the remainder theorem, the remainder obtained by 
dividing the given polynomial f(x) byx + 3isf(—3) = (—3)* + 5(—3)? + 
5(—3)? — 4(—3) — 7 = 81 — 1354 45 + 12 —7 = —4, 

The student may readily verify this result by actually performing the 

division. 

Example 2. By means of the factor theorem, show that x —5 is a 

factor of f(x) = x? — 827 + 19x — 20. 

SOLUTION. For « — 5 to be a factor of f(x), we must have f(5) = 0. 

Thus, f(5) = 53 — 8-5? + 19-5 — 20 = 125 — 200 + 95 — 20 = 0. 

Example 3. By means of the remainder theorem, prove that x” — a” is 
exactly divisible by x — a for every positive integral value of n. 

SOLUTION. By the remainder theorem, if f(~) = x” — a” is divided by 
%—a, the remainder is f(a) =a"—a"=0, and the division “is 

exact. 
This result may also be obtained by mathematical induction. (See 

Exs. 6 and 7 of Group 24, Sec. 7.3.) 

11.4. SYNTHETIC DIVISION 

As we have seen in the preceding section, the remainder theorem enables 
us to evaluate the polynomial f(x) for specified values of « without actually 
substituting. Since this requires the division of a polynomial by a binomial, 
the process might be somewhat lengthy by ordinary division. This 
operation, however, may be performed rapidly by an abbreviated form of 
division known as synthetic division. We will illustrate the procedure by 
considering the division of the polynomial 323 — 4x2 — 2x — 7 by x — 2. 
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By ordinary algebraic division (Sec. 2.7), this operation appears as follows: 

3x" + 2x + 2 (Quotient) 
a — 2|3a3 — 427 — 22 —7 

32° — 62” 

2u% — 2x 

2x? — 4x 

2x —7 

2x —4 

— 3 (Remainder) 

It is now our object to abridge, as much as possible, the work above. 
Since all polynomials are arranged according to descending powers of x, 

we may omit such powers and retain only their coefficients. Furthermore, 

since the coefficient of x in the divisor is unity, the first term of each partial 
product is a repetition of the term immediately above it, and hence may be 

omitted. Also, since the second term of each partial remainder is a 

repetition of the term above it in the dividend, it may be omitted. For 
convenience, we omit the first term of the divisor and place its constant 
term at the right of the dividend. In addition, since each coefficient of the 

quotient, with the exception of the first, is represented by the first coefficient 

of the partial remainder, the entire quotient may be omitted. Asa result of 
these omissions, the division above now appears as follows: 

3—4—-2-—7 |-2 

a8 
2 

For compactness, we now arrange the work in three lines as follows, 

repeating the leading coefficient in the third line: 

a a 

—6—4-—4 

8 2 

If we change the sign of the term in the divisor, we may add the partial 

products instead of subtracting them. This is desirable, for the remainder 

obtained as the result of this division is the value of f(~) when 2, not —2, is 
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substituted for z. Accordingly, the final form of our division is exhibited 

as follows: 

3—4=-2—7 2 
+64+444 

34+2+42[-3 

From the third line the quotient is 322 + 2% 4+ 2 and the remainder, 
separated from the quotient as shown, is —3. 

For convenient reference, we give here the 

Rule for Synthetic Division 

To divide a polynomial f(x) by « — r, proceed as follows: 
In the first line, write in order the coefficients ao, a1, @2,°**, a, of the 

dividend f(x), and write the number r separately at the right. If any power 
of # is missing in f(a), write its coefficient as zero. 

Write the leading coefficient ay in the first place in the third line, multiply 
it by r, and write the product apr in the second line under a,. Add a, and 

the product agr and write the sum a, + apr in the third line. Multiply this 
sum by r, write the product in the second line under a, and add it to a, and 

write the sum in the third line. Continue this process until finally a product 
has been added to a,, and the sum written in the third line. 

The last number in the third line is the remainder; the preceding num- 
bers in the third line are the coefficients of the quotient when arranged in the 
order of descending powers of x. 

NoTE. That the rule given above holds in general may be established by 
mathematical induction. 

After a little practice, the student will be able to perform the operation of 
synthetic division with great rapidity. We illustrate the rule in the following 

Example. By synthetic division, find the quotient and remainder when 
2a4 + 323 — x — 3 is divided by 2 + 2. 

SOLUTION. We first note that because the dividend lacks the term in 2?, 

we must supply a zero coefficient for its place. Furthermore, since we are 

dividing by x + 2 = x — (—2) = « — r, we must taker = —2. The work 
then appears as follows: 

2+3+0—-—1-— 3 |-2 
140) ard ie 

Se oS ee 

Hence, the quotient is 2x3 — a + 22% — 5 and the remainder is 7. 
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EXERCISES. GROUP 36 

In each of Exs. 1-4, by means of the remainder theorem, prove the given 
statement, m being a positive integer. 

1. x” — q” is exactly divisible by x + a if n is even. 
2. x" + a” is exactly divisible by x + a if n is odd. 
3. x" + a” is not exactly divisible by x + a if n is even. 
4. x" + a” is not exactly divisible by x — a if n is even. 

In each of Exs. 5-10, for the given polynomial, find the indicated values, 
using synthetic division and the remainder theorem. 

5. f(x) = 2x3 — 3a? + Sx — 7; f@), f(-—D. 

6. f(x) = 3x4 — 5x3 + 2x? — Tx + 8; Wa 2): 

7. f(z) = 2° — 2x4 — 3x? — 2a — 8; ih CD AS 

8. f(x) = 22° — 32? + 3x — 2; f (4), f(—9). 

9. f(x) = 9x* — 3a? + 22 — 1; f(4), f(0.1). 

10. f(a) = a? — 2a? + 3a — 2; f(0.2), f(—0.1). 

In each of Exs. 11-15, for the indicated operation, find the quotient and the 
remainder, using synthetic division. 

11. (7? + 4a? + 7x — 2) + (x + 2). 

12. (x* + 223 — 10x? — lla — 7) + (x — 3). 

13. (w® — xt + x — 2) +(x — 1). 

14. (2x° — 1423 + 8x? + 7) + (a + 3). 

15. (4x4 — 3x? + 3x + 7) + (x + 3). 

In each of Exs. 16-20, using the factor theorem and synthetic division, 
determine whether the given binomial is a factor of the given polynomial. 

16. «© —1; f@) =a? + 227 — 42 + 1. 

17.2 +2; f@) =«* — 327 — 22? + Sx — 9. 

18.2 +3; f@) = oe? + Ax* — 7x? + 52 — 3. 

19.2 —5; f@) =a — 5x7 —2 +5. 

20. a — 2; f@) =x* — 5z° + 32° — 2? + 7. 

In each of Exs. 21-25, using the factor theorem and synthetic division, 
determine whether the given equation has the root shown. 

Di ae Oe Se Wi = A ae pe 

DD SrA — 5 = Oe —s— 3 

De oes 86 ne So ee Se ASS) SE ee Sw 

DAMS 7 eo Ao a — a Oe Oe — le 

DS, Sy 26 She? = We ee SS aS ae Sr he 

In each of Exs. 26-30, use the factor theorem and synthetic division to obtain 

the required result. 
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26. Show that « —3 is a factor of x® — 2x2 — 23x + 60, and find the 

remaining factors. 

27. Show that x — 1 anda + 2are factors of #4 + 2x3 — 7x? — 8x + 12, and 

find the remaining factors. 

28. By trial, find all the real factors of vt — a> — 4x2 — Sx — 3. 

29. Show that two of the roots of x4 + x® — 16x? — 4x + 48 = 0 are 2 and 

—4, and find the remaining roots. 

30. By trial, find all the roots of #4 — «* — 222-2 + 4 =0. 

31. Using synthetic division, find the quotient and remainder when 2x* — 
5x3 + 3x2 — x + 3 is divided by 2x + 1. Hint: Divide synthetically by x + 4 
and then divide the quotient by 2. ~ 

32. Using synthetic division, find the quotient and remainder when 3x4 + 
2a3 + Sx? — 5a — 3 is divided by 3x — 1. 

33. By the remainder theorem, find the value of k so that the polynomial 

3x3 — 2a* + kx — 8 is exactly divisible by z — 2. 

34. Find the value of k so that the polynomial 2x + ka? — 3x — 4 is exactly 

divisible by x + 1. 

35. Find the value of k so that when x* + 2x3 — 3x? + kx — 7 is divided by 
x — 2, the remainder is equal to 3. 

36. Find the value of k so that when 4x3 + kx? — 2x + Sis divided by x — 1, 
the remainder is equal to 5. 

37. Find the values of aand bifx — 1 anda + 2 are factors of the polynomial 

a+ ae + bu — 2, 

38. Find the values of a and b if 2 and —3 are roots of the equation 2* + #3 + 

ax* + bx + 30 =0. 

39. Show that the rational integral equation f(x) = 0 has the root x = 1 if 

the sum of its coefficients is equal to zero. 

40. Show by mathematical induction that the rule for synthetic division 
(Sec. 11.4) holds in general. 

11.5. THE POLYNOMIAL GRAPH 

We have previously considered the graphical representation of algebraic 

functions (Secs. 3.9, 9.4) and have seen its many advantages. For this 
reason we now study the general problem of the construction and inter- 
pretation of the graph of the polynomial f(«). We recall (Sec. 3.9) that, as 
shown in the calculus, this graph is a smooth continuous curve. This fact, 
as we shall soon see, is of great value in locating the real zeros of f(x) and 
hence the real roots of the equation f(x) = 0 (Sec. 4.2). Accordingly, we 
now consider the following example. 
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Example 1. Construct the graph of the polynomial 

(1) J (%) = xt — 2 — 1222 + 82 + 24, 

and use it to locate any real roots of the equation f(x) = 0. 
SOLUTION. We first obtain the coordinates of a suitable number of 

points for the graph. Heretofore this has been done by substituting 
assigned values of x directly in f(x). However, in many cases such co- 
ordinates may be obtained with far less labor by the use of synthetic 
division. We shall see here, and later, additional advantages in using 
synthetic division. 

The first question that arises is what values to assign to x. Initially, it is 
generally convenient to let take on the values 0, +1, +2, and so on, 

continuing this process only so long as it gives us useful information about 
any real roots. Thus, for the function (1), we have the following pairs of 
corresponding values: 

ROL od FE ea oe ee 
f@)|24 20 0 -6 56 6 -16 0 120 

The reasons for not continuing beyond x = +4 will be apparent from the 
synthetic division for « = 4 and x = —4, as shown below. 

1—1—124+8+4+24 |4 1—1—12+ 8+24 |[-4 
aa 0 4 32 =f Bis) 25.95 
fee 8-56 es 4 0 

For x = 4, all the numbers in the third line of the synthetic division are 
positive or zero. Hence fora value of x > 4, the remainder will be positive 
and greater than 56; therefore there is no real zero greater than 4. 

Similarly, for 2 = —4, all the numbers in the third line of the synthetic 
division are alternately positive and negative. Hence fora value ofz < —4, 
the remainder will be positive and greater than 120; therefore there is no 

real zero less than —4. 
It is evident from our table of values that 2 and —3 are zeros of f(x) and 

thus roots of f(x) = 0. 

We note, furthermore, that f(x) changes from a negative value (—6) toa 

positive value (56) as x changes from 3 to 4. Since f(x) has a continuous 

graph, this means that f(x) must assume a zero value, and therefore Cross 

the X-axis, at least once between x = 3 and « = 4. That is, the equation 

f(x) = Ohas at least one real root between 3 and4. Bya similar argument, 

we see that f(x) = 0 has at least one real root between —l and —2. 

Plotting the points whose coordinates are given in the table of values 

above, and drawing a smooth curve through them, we obtain the graph 
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shown in Fig. 37. In the next section we will see that an equation of the 

fourth degree has exactly four roots. Hence, in this example, we have 

accounted for all of the roots of f(x) = 0. 

Ys 

Figure 37 

In the preceding example we studied an equation, all of whose roots are 
real and different. We will next consider an equation whose roots are not 

all real and are not all different. 
If two of the roots of an equation are equal, we are said to have a double 

root, if three roots are equal a triple root, and so on. In general, such roots 

are said to be repeated or multiple roots. If an equation has m roots each 

equal tor, then r is said to bea root of multiplicity m. In the next example 

we will consider an equation having multiple and complex roots. 

Example 2. Construct the graph of the polynomial 

(2) a) = IPe 2 aaa) 

and discuss the roots of f(x) = 0. 

SOLUTION. Usually we are not given a polynomial in factored form as in 
(2), but it is often possible to obtain such a form by trial, using the factor 
theorem and synthetic division. By the methods of Chapter 5 we may show 
that the quadratic factor x? + 2+ 1 is irreducible in the field of real 
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numbers and has the conjugate complex numbers sth as its zeros. 

Hence the equation f(x) = 0 has —1 asa double root, 2 as a triple root, 
ele V3i 

an ae tye 8 conjugate complex roots. 

We construct the graph of f(x) in order to show the effect of multiple 
roots. For greater accuracy we take values of x at intervals of 0.5, as 
shown in the table accompanying the graph in Fig. 38. 

x f() i; 

0 —8 
ea 20 
1 =12 ‘ 
rab 39 : ; “2 -15 -1 -05 

2.5 14.9 = 
3 20.8 

=.5.1) 098 
= 0 

Figure 38 

We note that for the double root —1, the graph is tangent to the X-axis 
at x = —]1 but does not cross it; this is a characteristic of a multiple root 

appearing an even number of times. We may also show this fact by the 
method of inequalities (Chapter 6) applied to the polynomial f() in the 
vicinity of the critical valuex = —1. For «slightly greater or less than —1, 
the factor (x + 1)? is positive, the factor (« — 2)? is negative, and the 

quadratic factor x” + x + | is positive. Hence, f(x) is negative and does 
not cross the X-axis atx = —1. 
We note also that for the triple root 2, the graph is tangent to the X-axis 

at x = 2 and also crosses it there; this is a characteristic of a multiple root 

appearing an odd number of times. This may be shown by applying the 

method of inequalities to the polynomial f(x) in the vicinity of the critical 

value « = 2. For « slightly less than 2, (w + 1) is positive, (v — 2)? is 

negative, and x2 + x + 1 is positive; hence f(x) is negative. For a slightly 

greater than 2, (w + 1)? is positive, (v — 2)? is positive, and x + x + 1 is 

positive; hence f(z) is positive. Since f(x) changes sign in going from the 

left to the right of x = 2, it follows from the continuity of the function 

that the graph must cross the X-axis at x = 2. 

For the quadratic factor x2 + « + 1, which is always positive and has 

no real zeros, there are no points on the X-axis. 
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From the discussion in these two examples, we may arrive at some 

important conclusions concerning the polynomial graph and its corre- 
sponding rational integral equation. For convenient reference we give a 

summary of these facts below. The rigorous proof of several of these 

statements will be found in advanced treatises. 

Characteristics of the Polynomial f(x) with Real Coefficients and the Rational 

Integral Equation f(«*) = 0 

In the synthetic division of f(x) by x — r, where r is positive, if all the 
numbers in the third line are positive or zero, then f(x) = 0 does not havea 
real root greater than r. 

In the synthetic division of f(x) by x — r, where r is negative, if the 
numbers in the third line alternate in sign, then f(x) = 0 does not have a 

real root less than r. 
If a and d are real numbers such that f(a) and f(b) are opposite in sign, 

then the graph of f(x) crosses the X-axis at least once between x = a and 

x = b,and the equation f(x) = 0 has at least one real root between aand b. 

If r is a non-repeated real root of f(~) = 0, then the graph of f(x) crosses 
the X-axis at x = r but is not tangent at that point. 

Let r be a real repeated root of f(x) = 0 and of multiplicity m. If m is 
even, the graph of f(x) is tangent to the X-axis at x = r but does not cross 

the X-axis at that point. If m is odd, the graph of f(x) is tangent to the 
X-axis at x = r and crosses the X-axis at that point. 

EXERCISES. GROUP 37 

In each of Exs, 1-14, construct the graph of the given polynomial and locate 

any real roots of the equation f(x) = 0. 

1. f(@) = x? — 6x7 + Ilw.— 6, 2. f(x) = 23 + 2a? — Sx — 6, 

30 fe) = a> — 252 8a. 4, f(z) = 23 — 2? —a@ —2. 

5. f(a) = at — 5x? + 4, 6. f(@) = a4 — 1327 — 122, 

7. fv) = x4 — 3x3 — 11a? + 25a + 12. 

8. f(x) = x4 — 203 — 12x? + 2x + 11. 

9. f(a) = x4 — 3x3 — 17a? + 21x + 34. 

10. f(@) = #3 — 4a? + Tx — 4, 11. f(x) = a4 + 4a3 + 2? — 16% — 20, 

12. f(x) = xt — 228 — 40? — 16x, 

13, f() = «2° + xt — 5x8 — a? 4 8a — 4, 

14. f(x) =x — vt — 8x3 + 82? + 16a — 16. 

In each of Exs. 15-18, sketch the graph of f(x) without first expanding into a 
polynomial. 

15. f(~) = (@ — 1)? + 2). 6. f(a) = x(a + 3)8(@ — 4)2, 
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17. fe) =(@ + 2% — 1%? + 1). 
18. f(~) = (@ + 2)(@ — 2)%@ — 4)4. 

In each of Exs. 19-23, solve the given inequality. 

19. v3 — 6x2 + lle —6>0. 20. wt — 102? +9 >0. 

21. a + 2x85 —2 —2>0. 22. a4 + 38 — a? — Ja — 6 <0. 

23. 2° — 2a* — 423 + 4e? — 5 + 6 > 0. 

24. On the basis of the continuity of the polynomial function f(x), show that, 

if a and b are real numbers such that f(@ and f(b) have the same sign, then the 

equation f(x) = 0 has either no real roots or else an even number of real roots 

between a and b. 

25. On the basis of the continuity of the polynomial function f(x), show that, 
if a and 6 are real numbers such that f(a) and f(b) are opposite in sign, then the 
equation f(x) = 0 has an odd number of real roots between a and b. 

11.6. NUMBER OF ROOTS 

We have already seen that the linear equation has exactly one root and 
the quadratic equation exactly two. These are special cases of the general 
theorem that the rational integral equation of nth degree has exactly roots. 

In order to prove this theorem we need 

Theorem 3. (Fundamental Theorem of Algebra). A rational integral 

equation f(x) = 0 has at least one root, real or complex. 

The proof of this theorem, known as the fundamental theorem of algebra, 
requires advanced methods beyond the scope of this book. Hence we 
assume its validity in establishing 

Theorem 4. A rational integral equation f(x) =0, of degree n, has 

exactly n roots. 

PROOF. Let the rational integral equation be represented by 

(Lye a50 4 oe ay ge a, = 0, dg 7 0. 

By Theorem 3, equation (1) has at least one root, say r;. Hence by the 

factor theorem (Sec. 11.3, Theorem 2), « — r, is a factor of f(x), and we may 

write 

f(@) = (« — r)Qi(), 

where Q,(x) is a polynomial of degree n — 1 with dy as its leading 

coefficient. 
By Theorem 3, Q,(x) = 0 has at least one root, say rp. Hence by the 

factor theorem, x — r, is a factor of Q,(x), and we may write 

f(x) = (@ — HY@ — 72) Q2(*), 
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where Q,(x) is a polynomial of degree n — 2 with ay as its leading coeffi- 

cient. 
Continuing this process for a total of n times, we obtain n linear factors 

and a final quotient which is simply the leading coefficient a). Hence, we 

may write (1) in the form 

(2) f(a) = age — rY(@ — ry)+* (@—1,) = 9 
where r,, 9,‘ **,/, are n roots of equation (1). 

We will now show that these are the only roots of (1). Suppose that r, a 
number different from any of these roots, is also a root of equation (1). 

Substituting this value in (2), we must have 

f@)-= ar 100 — re) a hy) 0. 

But this is impossible because all of the factors a), r—1,, r—To,°*", 

r — r, are different from zero. Hence equation (1) has exactly n roots and 
the proof is complete. 

Note. Any of the roots of equation (1) may be real or complex, and any of 

them may be repeated. A repeated root of multiplicity m is counted as m roots. 

The factored form of the rational integral equation, as given by equation 
(2), suggests a direct method for forming an equation whose roots are 
given. This is illustrated in 

Example 1. Form the rational integral equation having 1 and —3 as 
distinct roots and 2 as a double root. 

SOLUTION. The left member of the required equation has the factors 
ax — 1,x + 3, and (# — 2). Hence the equation is given by 

(x — 1) + 3)@ — 2)? =0 

or xt — 2x23 — Tx? + 202 — 12 = O. 

In connection with the proof of Theorem 4, for the first root r, of f(x) = 
0, we wrote 

f(@) = @ — 71)Q,(@), 

where Q,(x), a polynomial of degree n — 1, is the quotient obtained by 
dividing f(x) by x — r;. The equation Q,(x) = 0 is then called a depressed 
equation with respect to f(z) = 0. When a root of a given equation is 

known, it is usually desirable to remove this root and obtain the depressed 
equation. The remaining roots should then be sought from the depressed 
equation rather than from the original equation since, in general, the lower 
the degree of an equation, the easier it is to solve. We illustrate the pro- 
cedure in 

Example 2. Show that 2 and —1 are roots of the equation x* + x3 — 
2x* — 6% — 4 = 0, and find the remaining roots. 
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SOLUTION. We first verify 2 as a root by synthetic division. Thus, 

1+1-2-6-4 2 
+2+6+8+4 

1+3+4+4+42|+0 

The depressed equation is 2° + 322 + 4x + 2 =0. We use this equation, 
rather than the original one, to verify —1 as a root. Thus, by synthetic 
division, 

14+34+4+2 |-1 
— | 2:—2 

1+2+2|+0 

The depressed equation is now the quadratic equation a? + 27 + 2 = 0, 
the roots of which, by the quadratic formula, are readily found to be the 
conjugate complex numbers —1 + 7. 

From Theorem 4 it is possible to obtain an important result, which we 
state as 

Theorem 5. /f two polynomials, each of degree not greater than n, are 
identically equal, then the coefficients of like powers of the variable are equal. 

PROOF. Let the two polynomials be represented by 

PAG — Og A a 

RAgia= bee bas ot be + b. 

Since P,(x) = P(x), it follows that 

P,(x) — P(x) = 0, 

or, in terms of their polynomial representations, 

3 Gy OG, — ba (a, 0a)? ta, — 10, = 0. 

Now, by Theorem 4, there are exactly values of « for which the relation 

(3) holds. Hence, if relation (3) is to be an identity, that is, if it is to hold 

for all values of x, and therefore for more than n values of z, the coefficients 

in relation (3) must all vanish. In other words, we must have 

ay — by = O~7 a, —b,=0,-°-, a, — 6, = 9, 

whence ieee dy = Die oe De, 

This completes the proof. 

Corollary. Jf two polynomials, each of degree not greater than n, are 

equal to each other for more than n distinct values of the variable, the 

coefficients of like powers are equal, and the equality is an identity. 
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As an illustration of Theorem 5, we have 

Example 3. Find the values of A, B, and Cif the following identity is to 

hold: 

Qa? — 32 — 11 = A(x? — 1) + Bie? + 3a + 2) + Ce? + 4 — 2). 

SOLUTION. If we collect the various powers of x in the right member of 

the given identity, we have 

2a? — 3x —11 = (A+ B4+ Che? + BB+ Cx —A4+2B—2C. 

In accordance with Theorem 5, for this identity to hold, the coefficients 

of like powers of « must be equal. Hence we must have 

A+B+C=2, 3B4+C=-3, -A+2B—2C=—-l1. 

The solution of this system of 3 equations in 3 unknowns gives us A = I, 

B= —2, and C = 3, the required values. 

EXERCISES. GROUP 38 

In each of Exs. 1-12, form the rational integral equation having the given 

roots. 

hei See 2 tes: 3 e254 3) 

Ans leery 2 sha bag bem ep phate 

Jeter OD ea Se yee ea yp aL ibaa 

105194. 11925 al 7. BAS gam 

In each of Exs. 13-20, show that the given equation has as root(s) the indicated 
value(s) of r, and find the remaining roots. 

13 — we — Or ON nse 

14. 32° — 2? —32 +1=0,r =f. 

15. v3 — 622 + 13a —10 =O, r= 

16. 6u* — 41a3 + 642? + 19% — 12 =0,r =4, —4. 

17. wt — 2 — 922 + 3a + 18 =0,r =3, —2. 

18. 204 — 3x3 — 1402 + 2x +4 =0,r = —2, -4. 

19. «* + 423 — a + 16x — 20 =0,r = 1, —S. 

20. 3a* + lla? — 3402 + 462 — 12 = 0, r =4, —6. 

21. Show that the equation at — lla? — 12x + 4 =0 has —2 as a double 
root, and find the remaining roots. 

22. Show that the equation 8a° — 44x4 + 94x3 — 85x? + 34x — 5 =O has 4 
as a triple root, and find the remaining roots. 

, : each of Exs. 23-25, find the values of A, B, and C if the given identity is to 
old. 
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23. Se +1 = Aw +2) + B(x — 1). 

24. 7x? + 5x —8 = A(x® +4 — 6) + Be? + 4x + 3) + Cie? — x — 2), 

25. —«@ —2 = A(a? + @ +1) + (Be + Cle +:1). 

11.7. NATURE OF THE ROOTS 

In this section we continue our efforts to narrow the field of search for 
the roots of the rational integral equation f(z) = 0. In particular, we 
consider several theorems whereby it is possible to obtain some informa- 
tion concerning the nature of the roots before actually solving the equation. 
Thus our first theorem is concerned with the occurrence of complex roots. 

Theorem 6. Jf any complex number a+ bi is a root of the rational 
integral equation f(x) = 0 with real coefficients, then the conjugate complex 
number a — bi is also a root. 

PROOF. Let us substitute a + bi for x in the given rational integral 
equation 

(1) ge Ga ieee Gata 0. 

In the evaluation of the left member, even powers of bi will give real 
numbers, while odd powers of bi will give various multiples of the imagin- 

ary unit 7. Let the algebraic sum of all real numbers resulting from this 
substitution be represented by the real number A, and let the algebraic 
sum of all the imaginary numbers be represented by Bi, where B is a real 
number. Then, since a + bi is a root of (1), we have 

(2) A+ Bi =0, 

whence, by the definition of a zero complex number (Sec. 8.2), 

(3) A= 0 Vand bf — 0. 

Now if we substitute a — biin the left member of (1), the even powers of 
— bi will be the same as the even powers of bi, while the odd powers of —bi 

will differ from the odd powers of bi only in sign. Hence, if the real 

numbers 4 and B have the same significance as above, the result of this 

substitution is A — Bi for which, in view of (3), we may write 

A— Bi=0. 

Hence, a — bi is a root of equation (1), and the theorem is established. 

As an immediate consequence of this theorem, we have 

Corollary 1. A rational integral equation with real coefficients and of 

odd degree must have at least one real root. 
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We may also obtain another very important result from Theorem 6. 

Let a pair of conjugate complex roots of equation (1) be represented by 

a+bi. Then, by the factor theorem (Sec. 11.3),  — (a+ bi) and 

a — (a — bi) are both factors of the polynomial f(x). Hence, their product 
(w — a — bi\(x —a+ bi) = 2 — 2ax + a + B? is also a factor of f(z). 

Also, for each real root r (rational or irrational) of equation (1), there 

corresponds a linear factor x — r of f(x). Combining these facts, we have 

Corollary 2. Any polynomial in the single variable x and with real 
coefficients may be expressed as the product of linear and quadratic factors 
with real coefficients, each linear factor corresponding to a real zero and 

each quadratic factor to a pair of conjugate complex zeros. - 

As an illustration of Theorem 6, we have the following 

Example. Given that 1 + 2i is a root of the equation 

(4) xt — 5a3 + Tx? — Tx — 20 = 0, 

find the remaining roots. 

SOLUTION. By Theorem 6, the conjugate complex number | — 27 is also 

a root of (4). Hence (2 — 1 — 2i)(« — 1 + 27) = a — 2x + Sis a factor 

of the left member of (4). By division, the other factor is found to be 
a* — 3x—4. This gives us the depressed equation x? — 3x—4=0 

whose roots are readily found to be —1 and 4. Hence the required roots 
are 1 — 27, —1, and 4. 

There is a theorem on irrational roots analogous to Theorem 6. Let a 

and b be two rational numbers and let Vb be an irrational number. Then 

a+Vb is called a quadratic surd and a — Vb is called its conjugate 

quadratic surd. (See Note, Sec. 5.5.) By a method similar to that employed 
in proving Theorem 6, we may establish 

Theorem 7. If any quadratic surd a+b is a root of the rational 

integral equation f(x) =0 with rational coefficients, then the conjugate 

quadratic surd a — Vb is also a root. 

NoTE. At the close of Sec. 2.8 on number fields, it was stated that a property 

or theorem which is true in one field may not be true in another field. Theorems 

6 and 7 are examples of this fact. Thus, with reference to Theorem 6, if a + bi 

is a root of a rational integral equation whose coefficients are not all real 

numbers, it does not necessarily follow that the conjugate a — bi is also a root. 

EXERCISES. GROUP 39 

In each of Exs. 1-12, given the indicated root(s) of the equation, find the 
remaining roots. 
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1. a +227 -—4e +6 =0; 1 -i. 

De, x — 4x2 + 144 — 20 = 0; 1 + 33. 

3: at — 605 + 1422 — 14a +5 =0; 2—-i. 

4.04 +23 +22 4+ lla +10 =0; 1 423. 

5. 8% +22 —Se —5 =0; V5. 

6. «3 — 622 + 7x +4 =0; 1 — V2. 

7. af — 9x3 + 2722 — 332 +14 =0; 3 + V2, 
8. at — 323 — 62? + 14 + 12 = 0; 1 — V3. 
9. x — Jat + 1623 — 3222 + 152 — 25 = 0; 7,1 — 21. 

10. 2° — vt — 5x3 + 2? + 62 +2 =0; Voet ve 

11. 25 — 8x4 + 2623 — 4022 + 16x =0; 2 + V2,2 +23. 
12. 28 — 225 — 4a* — 823 — 7722 + 902 + 360 =0; V5, 3i. 
In each of Exs. 13-15, form the equation of lowest degree with real coefiicients 

having the indicated roots. 

135 —2. 3 + 1. 14 eS. 27. 15. 2 + 4, 2/. 

In each of Exs. 16-18, form the equation of lowest degree with rational 

coefficients having the indicated roots. 

inci ig Be oe es ev, Seley 2 
In each of Exs. 19-21, express the given polynomial as the product of linear 

and quadratic factors with real coefficients. 

19, 2? + 322 — 32 — 14, 20. x + 2a3 + x? + 8x — 12. 

21. x* — 223 — 62? — Tx — 4. 

In each of Exs. 22 and 23, express the given polynomial as the product of 
linear and quadratic factors with rational coefficients. 

22. xt — x3 — 9x? + 3x + 18. 23. 2x4 — 9a + 10x? + x — 2, 

24. Establish Corollary 1 of Theorem 6 (Sec. 11.6). 

25. Establish Theorem 7 (Sec. 11.6). 

11.8. DESCARTES’ RULE OF SIGNS 

We now continue our study of the nature of the roots of a rational 

integral equation by considering a very important theorem known as 

Descartes’ rule of signs. By means of this rule, it is possible to determine 

the maximum number of positive and negative roots of a rational integral 

equation with real coefficients. However, before stating and discussing this 

theorem, it will be necessary to establish certain preliminary facts. 

We first consider the determination of any possible zero roots of a 

rational integral equation, for such roots are neither positive nor negative. 

It is clear that if the equation lacks the constant term, but not a first degree 

term, it has a single zero root; if it lacks both constant and first degree 
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terms, but not a second degree term, it has two zero roots, and so on. In 

general, if the equation has the form 

ax” + ax”! + age” 4+ +--+ 4+ a,_,47°=0, ay #0, 

where the term of lowest degree is a,_,”, then the equation has exactly 
r zero roots. In such a case we remove these r zero roots by factoring out 
x” and then continue to work with the depressed equation of degree n — r. 

It will be understood hereafter that the first step in the solution ofa rational 
integral equation is the removal of any zero roots. We may note here that 

an equation in which all powers of x and the constant term are present is 

said to be complete, otherwise, incomplete. 
Let f(x) = 0 represent a rational integral equation. If x is replaced by 

—x throughout this equation, we obtain another equation f(—z) = 0 

whose roots are the roots of f(x) = 0 with their signs changed. For, if 
« = risarootof f(x) = 0, then —z = rorx = —risaroot of f(—2z) = 0. 

Also, if —x is substituted for x in the polynomial f(«), the new polynomial 
f(—*) differs from f(x) only in the signs of the terms of odd degree, the 

constant, if any, being considered of even (zero) degree. For example, 

consider the equation 

(1) et + 2a? — 132? — 1dr +- 24 = 0. 

Then the equation whose roots are numerically equal but opposite in sign 

to those of equation (1) is 

(2) xt — 223 — 13a? + 14a + 24=0. 

The student may readily verify that 1, 3, —2, —4 are the roots of (1) and 

that —1, —3, 2, 4 are the roots of (2). Summarizing, we may state that in 
order to transform a given equation into another whose roots are opposite 

in sign, we need merely change the signs of the terms of odd degree. We 
shall see later (Sec. 11.11) that this is a special case of a more general 
transformation. 

Let f(x) represent a polynomial in x with real coefficients and arranged in 
descending powers of x. If two successive terms differ in sign, there is said 
to be a variation in sign. Thus, in the left member of equation (1) above, 

there are two variations in sign, one from 2x3 to — 132? and the other from 
— 14x to 24. Note that a variation in sign occurs for two successive terms 
even though some intermediate powers may be missing. Thus, in the 
polynomial 27 — 2x* + 3a? — 2, there is only one variation in sign from 
z’ to —224, one from —2z2* to 3x3, and only one from 323 to —2. Our 
purpose in introducing the term variation in sign at this time is that it is a 
basic concept in Descartes’ rule of signs which we will now state in full as 
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Theorem 8. The proof of this theorem is omitted; it is beyond the scope of 
this book. 

Theorem 8. (Descartes’ Rule of Signs). Let f(x) =0 be a rational 
integral equation with real coefficients and no zero roots. Then 

I. The number of positive roots of f(x) = 0 is either exactly equal to the 
number of variations in sign in f(x) or else is less than that number by a 
positive even integer. 

2. The number of negative roots of f(x) = 0 is either exactly equal to the 
number of variations in sign in f(—«) or else is less than that number by a 
positive even integer. 

NOTES. 1. Part 2 of this theorem concerning negative roots is an immediate 
consequence of Part 1, since the positive roots of f(—x) = 0 are the negative 
roots of f(x) = 0. 

2. This theorem also gives us some information concerning the possible 
number of complex roots. If f(x) = 0 is of degree n, it has exactly n roots 

(Theorem 4, Sec. 11.6). Hence the number of complex roots is equal to n 

diminished by the sum of the positive and negative roots. 

As our first illustration of this theorem, consider equation (1) above 
where, as we have previously noted, there are two variations in sign. Hence 
this equation has either exactly two positive roots or none. Furthermore, 
since equation (2), whose roots are opposite in sign to those of equation 
(1), has two variations in sign, equation (1) has either exactly two negative 

roots or none. Also, since equation (1) is of degree 4, it may have four, 

two, or no complex roots. Thus there are four possible combinations for 

the roots of equation (1), as shown in the following table. 

Positive Negative Complex 

2: 0 N 

oowv 

0 2 

2 2 

0 4 

In this particular case we happen to know by a previous check that there 

are exactly 2 positive and 2 negative roots. 

Under certain conditions Descartes’ rule gives very precise information. 

For example, if f(x) has only 1 variation in sign, then f(x) = 0 has exactly 

1 positive root, for we cannot diminish 1 by a positive even integer. 

Similarly, if f(x) = 0 has an odd number of variations in sign, then f(x) = 

0 has at least 1 positive root. Similar remarks apply for negative roots. 

We note in the table above that there are either no complex roots or 

else an even number of them. This must necessarily be the case because 

complex roots occur in conjugate pairs (Theorem 6, Sec. NGG 



244 Theory of Equations Ch, 11 

As a further illustration of Descartes’ rule we have the following 

Example. By means of Descartes’ rule of signs, find all possible informa- 

tion about the nature of the roots of the given equation. 

(a) w+ 324 + 203 — 2? — 327 —-2=0. 

(b) 8 — 325 + xt — 2? — 627 = 0. 

SOLUTION. (a) We first write 

{@) =e 7-37 4 — 2 — 32 —2 

whence f(—a) = —2x° + 3a4 — 22° — x? + 3a — 2. 

f(«) has only 1 variation in sign. Hence there is exactly 1 positive root. 
f(—*) has 4 variations in sign. Hence there are either 4, 2 or no negative 

roots. 
Therefore the possible combinations of positive, nega- pats g H 

tive, and complex roots are as shown in the accom- ly ata 
panying table where the number of complex roots is given é : 
in the third column under “‘c.”’ ae 

(b) By inspecting we see that the given equation has two zero roots. 

Factoring out 2, we have 

f(x) = ae — 328 + 22? — 2 — 6 

whence f(—2) = a + 3x3 + 22 4+ x — 6. 

J («) has 3 variations in sign. Hence there are either 3 positive roots or 

1 positive root. 

f(—«) has 1 variation in sign. Hence there is exactly 1 negative root. 

The possible combinations of zero, positive, nega- On ge 
tive, and complex roots are as shown in the accom- Cee mnt. 
panying table. 2 slew 

EXERCISES. GROUP 40 

In each of Exs. 1-16, by means of Descartes’ rule, find all possible information 

about the nature of the roots of the given equation. 

1. 2a* + a? + 27 —3 =O. 2. 2 — 4e* + 3a? — 5 = 0) 

3. 303 + 902? — 7a +4 =0. 4, wo + 203 — 3a? + 227 +2 = 0. 

5. 248 + 304 + 227 +9 =0. 6. «7 + 54 4+ 2a + Ja +1 = 0. 

7. w + 303 + 5a = 0, 8. 404 — 38 + 20? —29 +2 =0. 

9.27 —1 =0, 10.2! — 1 = 0) 

I ee deo actos eae) 12>27 +1 =0, 

13. 2 — 2x4 + 5x° — Ja2 = 0, 14. a? + 2a° — 3a4 + 823 — Or = 0. 
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15. «9 + 407 — 626 + 4at—8 =0. 16. 228 — 3a8 + 903 — 22 +5=0. 
17. Show that the equation 3x° — x + 2x — 8 = O has at least two complex 

roots. 

18. Show that the equation x? + 4x® 4+ 223 + 9x? + 6 = 0 has at least four 
complex roots. 

19. Show that the equation 4x4 — 3x3 — x — 10 = Ohas exactly two complex 
roots. 

20. Show that the equation 2° + 3x4 — 2x2 —6 =0 has exactly four 
complex roots. 

21. For the equation x" — 1 = 0, show that (a) if 7 is even, there are exactly 

two real roots +1 and — 2 complex roots; (b) if 7 is odd, there are exactly one 

real root +1 and m — 1 complex roots. 

22. For the equation x" + 1 = 0, show that (a) if m is even, all m roots are 

complex; (b) if is odd, there are exactly one negative root —1 and n — 1 

complex roots. 

23. Show that a given equation may be transformed into another whose roots 

are opposite in sign by changing the signs of the terms of even degree, the 
constant term being considered of even degree. 

In the following exercises, all equations are rational integral with real coeffi- 

cients. 

24. Show that an equation whose terms are all positive has no positive roots. 

25. Show that an equation whose terms of even power are all of one sign and 
whose terms of odd power are all of the opposite sign has no negative roots. 

26. Show that a complete equation whose terms are alternately positive and 
negative has no negative roots. 

27. Show that an equation having only odd powers (and no constant term), 

and these all of the same sign, has no real root except zero. 

28. Show that an equation having only even powers (and a constant term), 
and these all of the same sign, has no real roots. 

29. If all the roots of a complete equaiton f(x) = 0 are real, show that the 

number of positive roots is exactly equal to the number of variations in sign of 
f(x), and that the number of negative roots is exactly equal to the number of 

variations in sign of f(—2). 

30. If the equation f(x) = 0 has no zero roots, show that it has at least as 

many complex roots as the difference between the degree of the equation and the 

total number of variations in sign of f(x) and f(—~). 

11.9. RATIONAL ROOTS 

We next consider the determination of any rational roots which a given 

rational integral equation may possess. For this purpose we have the 

following very useful and important theorem. 
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Theorem 9. Let the rational fraction p/q, reduced to its lowest terms, 

be a root of the rational integral equation 

(1) age” + az" 1+---+a, 4% +a, =0 

whose coefficients are integers (or zero) but aj AO anda, #0. Ti hen p is 

an exact divisor of a,, and q is an exact divisor of ay. 

PROOF. Since p/q is a root of equation (1), we have 

n n— 1 

(2) an(2] + a,(2) fect an-1(2) +a, =0. 
q q q: 

Multiplying both sides of (2) by q”, we have 

(3) Aop” ak a,p”1q tere t CG ae + ang” = 0. 

Transposing a,g” to the right side of (3) and then factoring out p from 

the left side, we obtain 

(4) P(aop"* + a,p”"*q + Ges + ESD) = —a,g". 

Since p, g, a, 4, °° *, a, are allintegers, it follows that both sides of (4) 

are integers. Since p is a factor of the left member, it must also be a factor 
of the right member. But p and g have no factor in common (except +1); 
hence p is an exact divisor of a,,. 

From equation (3), we have 

(5) gap" at wens + Gas Pg es ae ag) — —Aagp”. 

If the same reasoning is applied to equation (5) that we applied to 
equation (4), we find that qg is an exact divisor of ap. 

From this theorem we have the important 

Corollary. In the rational integral equation (1), whose coefficients are 

integers, if the leading coefficient ay = 1 and the constant term a, ~ 0, then 
any rational root is an integer and an exact divisor of a,,. 

NOTE. We can also make use of Theorem 9 when the coefficients are rational 

but not integers. In such a case we need merely multiply by the least common 

denominator of these coefficients, thus obtaining an equivalent equation with 

integral coefficients to which Theorem 9 applies. 

It should be particularly observed that the importance of Theorem 9 lies 
in the fact that it restricts our search for rational roots to a limited number 
of possibilities. This will be seen in the following examples. 
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Example 1. Find all the roots of the equation 

(6) 2x4 — 23 — 4o2 4 1027 —4 = 0, 

SOLUTION. We first apply Descartes’ rule of signs ae 
to equation (6) and thus obtain the results shown in 3 1 9 

1 iL. 2 the accompanying table. 

We next apply Theorem 9 for any possible rational roots p/q by writing 
out the factors of the constant term —4 for values of p and the factors of 
the leading coefficient 2 for values of g. This is conveniently exhibited thus: 

p= +1, +2, +4 
qg= +1, +2 

Hence we have the following eight possible rational roots: +1, +4, +2, 
+4. In testing these values we find that } and —2 areroots. Assoonasone 
negative root is found, there is no need for testing further for negative roots, 

in accordance with the findings of Descartes’ rule of signs. In all cases, as 
soon as a root is found it should be removed and the testing continued with 
the depressed equation. This may be done conveniently by synthetic 
division as here shown. 

2=1— 410-4 |k 
+1+0-— 2+4 

CNet! |2 
Are Sens 
Dae 

The final depressed equation is 2a? — 4x + 4=0 or 2 —2a+2=0 
whose roots, by the quadratic formula, are readily found to be 1 +7. 
Hence the roots of the given equation (6) are 3, —2, 1 +7. 

At this point we have gone as far as we intend to go in finding rational 

roots. It is therefore an appropriate place to summarize the various steps 

to be taken in obtaining such roots, as shown in the 

Procedure for Rational Roots 

In order to obtain the rational roots of a given rational integral equation 

with rational coefficients, the following steps should be taken in order: 

1. If there are any zero roots, they should be removed, and the resulting 

depressed equation only should be considered in the steps following. 

2. Apply Descartes’ rule of signs (Theorem 8, Sec. 11.8) to determine the 

possible nature and distribution of the roots. Use this information as a 

guide for any testing in the succeeding steps. 
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3. Apply Theorem 9 and its corollary (Sec. 11.9) for determining any 

possible rational roots. Test for these roots, and as each root is found, 

remove it and continue with the depressed equation. 

4. After all rational roots have been removed in Step 3, the depressed 

equation, if any, has only irrational and (or) complex roots. If this 
depressed equation is quadratic, it may be solved for the remaining roots. 

As an illustration of the above procedure we have 

Example 2. Find all the roots of the equation 

(7) a + 325 — 1344 — 2523 + 50x? 4+ 24x = 0. 

SOLUTION. 1. By inspection, we see that equation (7) has one Zero root. 

Removing this root we have the depressed equation 

(8) x + 3x* — 1343 — 252? + 50x + 24 =0. 

2. Applying Descartes’ rule to equation (8), we 
obtain the results shown in the accompanying table. 

SONNI]+ me We WwW RNWNOI|S 

3. Since the leading coefficient of equation (8) is unity and the coefficients 
are all integers, it follows from the corollary to Theorem 9 (Sec. 11.9) that 
any rational root must be an integer and an exact divisor of the constant 

term 24. Hence possible rational roots are +1, +2, +3, +4, +6, +8, 

+12, +24. By actual test, we find that 2, —3, and —4 are roots. The 

removal of these roots leading to the depressed equation is shown below. 

1+3-—13—25+4+50424 |2 
+24+10- 6—62—24 

1+5- 3-31-12 eS 
Smo ietel2 
1+2-9- 4 |-4 
—4+ 8+ 4 
1-2-1 

4. In Step 3 we actually found 1 positive and 2 negative roots. But, in 
view of the results from Descartes’ rule (Step 2), there must be another 
positive root and another negative root. These two roots must therefore 
be irrational. We verify this conclusion by solving the depressed equation 
a* — 2x — 1 = 0 whose roots are found to be 1 + V2. Hence the roots of 
the given equation are 0, 2, —3, —4,1 + V2. 
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EXERCISES. GROUP 41 

1. Establish the corollary to Theorem 9 (Sec. 11.9). 

In each of Exs. 2-17, find all the roots of the given equation. 

2. 223 — 9x2 + 122 — 4 = 0, BBa 1 4y2— 359) 12) 0: 

4. 4x4 — 3923 + 54227 + 162 =0. 5. Daa Rey indy tere 

6. 2x* + 323 — 1022 — 122 + 8 =0, : ; 

7. Sat + 1523 — 14322 + 41x + 30 =0. 

8. 4x4 + 2x3 — 82? —- 32 +3 =0. 9. 405 — det — 5a 42 +2 =0. 

10.325 + Sa* +23 + 5a*.— 27 = 0. 
11. 2& — 2 — 22° — 4a? = 0, 12. 24 — 323 — 2 — 122 — 36 = 0, 

13. 3a7 — 4x3 4+ 282? — 362 +9 =O. 

14. 122° + 404 + 7x3 + 142? — 342 + 12 =0. 

15. 6x? + 11x? — 8x2 + 37x —6 =0. 

16. 8x4 + 10z° + 92? +2 —1 =0. 

17. 8x* — 28x? + 34x? — 175x — 100 = 0. 

In each of Exs. 18—23, find the rational roots of the given equation. 

18. 3x3 + 11a? + 8a — 4 = 0. 

19. x® + 324 + 5a? + 822 + 67 + 4 = 0. 

20. 2x8 + x2® — 2x4 — a3 — 122? — 62 = 0. 

21. x? — 3x6 + a — 3x4 + ao — 3x? +e —3 =0. 

22. 12a* — 1345 — 12x* + 26x? — 2527 +2 =0. 

23. 38 +- a7 + x8 +o 4+ 1024 + 423 4+ 4a? + 4o — 8 = 0. 

In each of Exs. 24-27, show that the given equation has no rational roots. 

24. 24 + 4c? —27 +6 =0. 25, a* + Qu? — 3x? — 47 +3 = 0, 

26. 2a — a2? + 407 +2 42 =0. 

27. 2° — 4a4 + a? + 227 — 82 + 2 = 0. 

28. The dimensions of a rectangular box are 3 ft, 5 ft, and) 7) ft. If each 

dimension is increased by the same amount, the volume is tripled. Find the 

increase in each dimension. 

29. The dimensions of a rectangular box are 6 ft, 8 ft, and 12 ft. If each 

dimension is decreased by the same amount, the volume is decreased by 441 cu ft. 

Find the decrease in each dimension. 

30. Equal squares are cut from the corners of a rectangular piece of card board 

7 in. long and 6 in. wide, and the remaining rectangular portions along the sides 

are folded up to form an open box whose volume is 15 cu in. Find the side of 

each square cut out. (Two solutions.) 
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11.10. IRRATIONAL ROOTS 

If a rational integral equation has any irrational roots, they may be 

determined by various methods. Two of these methods will be considered 

in this chapter, one in the present section and the other in Sec. 11.12. 

For a rational integral equation with rational coefficients, we will first 

follow the procedure for rational roots as outlined in Sec. 11.9. Thus any 

zero and (or) rational roots are first removed, and any irrational roots are 

obtained from the depressed equation. 
If the depressed equation is a quadratic, 

P(a,h) the roots are readily obtained by the 
quadratic formula. Hence, in the follow- 

ing discussion we will assume that the 
depressed equation is of degree 3 or 
higher. In this case irrational roots are 
generally determined in decimal form, 

ye 
A 

ee Oe) and the degree of accuracy depends upon 
i the number of decimal places obtained. 

Figure 39 The process, therefore, is essentially one 

of approximation. 
The method of approximation discussed in this section is called /inear 

interpolation. It is based on the assumption that a small segment of a 
continuous graph may be considered a straight line without introducing an 
appreciable error. This is, of course, only an approximation but becomes 
better as the length of the segment is diminished. 

To describe the method of linear interpolation, let us consider the graph 
of the polynomial function f(x) with real coefficients. Let a and b be two 
positive numbers very close in value and such that b >a. For «=a, 
suppose that f(a) = h > 0, and for « = b, suppose that f(b) = —k <0. 
Then f(x) has a zero between a and b (Sec. 11.5). This situation is repre- 
sented graphically in Fig. 39 where P(a, h) and Q(b, —k) are two neigh- 
boring points on the graph. The points A and B, respectively, are the feet of 
the perpendiculars dropped from P and Q to the X-axis. Let R be the 

point of intersection of the extension of PA and the line through Q 
parallel to the X-axis. We assume that the graph of f(x) between P and Q 
is a straight line intersecting the X-axis in the point C between A and B. 
Then the abscissa x, of the point C is the approximate value of the zero of 
f(x) which lies between a and b. This value of x, may now be readily 
computed. From the similar right triangles PAC and PRQ, we have the 
relation ty s 

(1) | 
RQ RP 
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Now RQ = AB=b—a, AP=h, and RP=h+k. Substituting these 
values in (1), we have 

Bc = me , Whence AC = EES) De 
b—a h+k h+k 

Since a, b, h, and k are all known quantities, AC is readily determined. 
Adding its value to a, we obtain the required value of 2,, the first approxi- 
mation. 

Starting with this first approximation, we may repeat the process to 
obtain a second and more accurate approximation. The process may be 
repeated successively as often as required in order to obtain any desired 
degree of accuracy. 

To illustrate linear interpolation in a specific case, we have the following 

Example. Show that the equation 

(2) [(@) = — 527422 +6=—0 

has a root between | and 2, and find it correct to one decimal place. 

SOLUTION. By synthetic division we find f(1) = 4 and f(2) = —2 so 
that equation (2) definitely has a root between | and 2. We next plot this 
information as shown in Fig. 40(q), the lettering being the same as in Fig. 
39. Then from relation (1) above we have 

ae ie whence AC = 
1 6 

Our first approximation is therefore x, = 1 + 0.6 = 1.6. 

WIN 

SOS, 

Yi Na 
A 

P(1.6,0.496) 

Near eees 
Q (1.7, = 0.137) 

(a) (6) 

Figure 40 

To ensure the accuracy of the required root to the first decimal place, we 

repeat the process to obtain the second decimal place. Thus, we find 

f(.6) = 0.496 and fU.7) = —0.137, so that equation (1) has a root 

between 1.6 and 1.7. This information is plotted in Fig. 40(6), where the 
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same lettering is used again. Here RQ = 0.1, AP = 0.496, and RP = 

0.137 + 0.496 = 0.633. Hence, by relation (1), we have 

AG UBIO ence AG ee ee OT 
01 0.633 0. 

Thus our second approximation is 7, = 1.6 + 0.07 = 1.67. 
The required root, correct to one decimal place, is therefore 1.7. 

Notes. 1. Care should be taken to test each approximation to make sure that a 

root lies between two consecutive values. This is particularly important for the 

first approximation since we here consider the segment of the graph which is 

maximum in length and where, therefore, the approximation is least accurate. 

For example, the first approximation in a particular case may indicate a root 
between 1.6 and 1.7, but testing may show that the root actually lies between, say, 

1.2 and 1.3. 

2. While the method of linear interpolation becomes more and more accurate 

with successive approximations, the amount of computation also increases 

considerably. The method, however, has the distinct advantage that it may be 

used also to approximate the irrational roots of nonalgebraic equations, that is, 

of transcendental equations such as trigonometric and logarithmic equations. 
The labor of computation may be reduced to some extent by the use of tables of 
functions and calculating machines. 

11.11. TRANSFORMATION OF EQUATIONS 

By a transformation we mean an operation whereby one relation or 
expression is changed into another in accordance with a given law. 
Generally the purpose of a transformation is to change a given relation 

into a more useful form. In particular, this section will be devoted to two 
types of transformations whereby a given rational integral equation is 
changed into another whose roots bear a specified relation to those of the 
original equation. These transformations are discussed at this time in 
anticipation of the work of the next section. 

Theorem 10. By multiplying the successive coefficients, starting with 
the second term, of the rational integral equation 

(1) agin Be an ae Goce 4 +. ites + anne as a _— @) 

ye 4 cmeo ) i i by m, m?, m°, ,m", we transform (1) into another equation of the form 

(2) agy” + may” + may” + +++ + m"—a,_,y + ma, = 0, 

each of whose roots is m times the corresponding root of equation (1). 
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PROOF. Each root y of the transformed equation (2) is to correspond to 
each root x of the given equation (1) in accordance with the relation y = 
mx from which x = y/m. Substituting this value of x in (1) we have 

n m= n-2 oe ro(t sole ot on(8) tone m m m m 

Multiplying through by m”, we obtain the required equation (2). 

Corollary. For the particular case m = —1, the roots of equation (2) 
are numerically equal but opposite in sign to those of equation (1). 

Notes. 1. In using the transformation of Theorem 10, missing powers of x 

must be taken into account. This may be done by considering such terms to have 

zero coefficients. 

2. The corollary has already been used in connection with Descartes’ rule of 

signs (Sec. 11.8). 

As an illustration of Theorem 10, we have 

Example 1. Transform the equation 

(3) a — 34° — + = 0 

into another equation each of whose roots is twice the corresponding root 

of equation (3). 

SOLUTION. We note first that the term of second degree is missing in 

equation (3). Hence, by Theorem 10, the transformed equation is 

Wo Noy (2) Dye (2 yi (2) = 0 gor 
(4) y* — 10y? — 8y + 80 = 0. 

The student should verify this result by showing that the roots of (3) 

arene 3: aa and that the roots of (4) are 2, 10, —1 + V/3i. 

Theorem 10 may also be used to transform a given equation whose 

leading coefficient is different from unity into another equation whose 

leading coefficient is unity and whose other coefficients are integers. The 

transformed equation is then one to which the corollary of Theorem 9 

(Sec. 11.9) applies. We illustrate the procedure in 

Example 2. Transform the equation 

(5) 824 + 1023 + Ov? + 27—-—1=0 

into another equation whose roots are equal to those of equation (5), 

multiplied by the smallest number which will make the leading coefficient 

of the new equation unity and all of its other coefficients integers. 
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SOLUTION. Dividing (5) through by 8, we have 

5 Y 1 1 
44 -g8 +i go? +-4—-=0 
Berea eae oF 

In order to obtain a new equation with leading coefficient unity and all 
other coefficients integers, the smallest number by which we can multiply 
the roots of this equation is 4. Hence, by Theorem 10, the required 

equation is 

5 9 1 si) a (4) = gt (4)° 2 2? + (4) = 2 — (4)? = = 0, of eaael dip one aE CON as 

(6) at + 53 + 180? + 84 — 32 = 0. 

By the corollary of Theorem 9 (Sec. 11.9), the rational roots of (6) are 

found to be the integers 1, —2. Hence the rational roots of equation (5) 

are +, —}. 

We now consider the transformation which is of basic importance in the 
method of approximation discussed in the next section. 

Theorem 11. The rational integral equation 

(7) Fe) = age” + az) + aw"? 4 ++ + ae +a, = 0 

is transformed into the equation 

(8) Boy PAS Rey A Roy Re ee 

each of whose roots is h less than the corresponding root of equation (7) and 

where the coefficients Ry, Ry,° ++, R, may be obtained as follows: 
Divide f(x) by x — h, and call the remainder R,. Divide the quotient by 

a — h, and call the remainder R,_,. Continue this process for a total of n 
divisions, the last remainder being R,. 

pRooF. Each root y of the transformed equation (8) is to correspond to 
each root x of the given equation (7) in accordance with the relation y = 
« —h, whence x =y +h. Substituting this value of # in (7) we have 

(9) afythA"+a(y+h"+---+4, (y +h) +a, =0, 

each of whose roots is h less than the corresponding root of equation (7). 
To reduce equation (9) to a rational integral equation in y, we may expand 
the binomial powers, collect terms, and write the result in the form 

(10) agy” + Ay”! + Asy”* +°°- +4, y+ A, = 9. 
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But we may determine the coefficients 4,, A,,*--, A,, much more simply. 
Thus, substituting « — A for y in (10), we have 

(11) ao(x — h)” + Ay(w — bh)" + A,(x — hy” 

Pees AL ae — nh) + AL 0. 

If we divide the left side of (11) by « — A, we obtain a quotient and a 
remainder A, If we divide this quotient by x — h, we obtain another 

quotient and a remainder A, ,. Continuing this process for a total of n 
divisions, we obtain A, as a final remainder. Designating the remainders 
Aggie a by Ko Re, kh. and substituting these. values in 

equation (10), we obtain the required equation (8). 

NoTES. 3. The divisions required by this theorem are conveniently performed 
by synthetic division, as illustrated in Example 3 below. 

4. It follows from this theorem that if we wish to transform a given equation 

into another equation each of whose roots is h more than the corresponding root 

of the given equation, we diminish the roots of the given equation by —h. 

Example 3. Transform the equation 

(12) a3— 627 + 54+ 12=0 

into another equation, each of whose roots is two less than the corre- 

sponding root of equation (12). 

SOLUTION. In accordance with Theorem 11, we divide successively by 
x — 2. With synthetic division, the work appears as follows: 

(263 05b ® 
+2—8— 6 

1—4—3] +6 R; = 6 
+2-—4 

{—2)—7 R, = —7 
+2 

(Lea) R, =0 

Hence the required equation is 

(13) ee —Tx+6=0. 

The student should verify this result by showing that the roots of (12) 

are 3, 4, —1 and that the roots of (13) are 1, 2, —3. 

EXERCISES. GROUP 42 

In each of Exs. 1-7, find the indicated root of the given equation correct to 1 

decimal place, using the method of linear interpolation. 

(eat —372 oe — 5S = "07 2< 2 3. 
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ae? — 6a? +1247 —10 = 0; 3 <a <4. 

See sr = oe — 17 = Opel <r ae2, 

eo +322 — 27 —1 =0;0<r7 <1: 

we? — 322 — 26% + 69 = 0; 2 <a <3. 

zt — 2x? + 2i2 —23 =0; 1 <@ <2. 

, wt — 6a? + 12% — Ja —12 = 0; 3 < aw <4. 

8. By linear interpolation, find the positive root of 

xt — 2x3 — 3x? — 2x — 4 = 0 correct to two decimal places. 

9. By linear interpolation, find the negative root of 

at — 2x3 — 3x? — 2x — 4 = O correct to two decimal places. 

Hint: Change the signs of the roots and find the corresponding positive root. 

10. By linear interpolation, find the positive root of 

4a* — 4x3 + Ta” — 8x — 2 = 0 correct to three decimal places. 

11. Verify the result of Example 1 (Sec. 11.11). 

In each of Exs. 12-15, transform the given equation into another having roots 
m times those of the given equation. 

12. 2? — 22? —@ +2 =0; m =3. 13. 22? + a* — 132 +6 = 0; m =2. 

14. of —2? +4 —1=0; m=3. 15. xz? + 3a? — 3x —14 =0; m = —2. 

16. By actually finding the roots, verify the result of Ex. 12. 

17. Establish the corollary to Theorem 10 (Sec. 11.11). 

In each of Exs. 18-21, transform the given equation into another whose roots 

are opposite in sign to those of the given equation. 

18. 23 — 4a? + 14¢ — 20 =0. 19. 2x4 + 603 — 7a? + 12 =0. 
20. 322 + 2a7 —9x +2 =0. 21. wt — 32° + 227 —2@ +1 =0. 

22. By actually finding the roots, verify the result of Ex. 18. 

NAWA YN 

In each of Exs, 23-26, transform the given equation into another whose roots 
are equal to those of the given equation multiplied by the smallest number which 
will make the leading coefficient unity and all other coefficients integers. 

23. 4a3 — 20u? + 9x + 28 =0. 24. 2a4 — 3x3 — 14a? + 22 + 4 = 0. 

25. 303 — a — 3a +1 =0. 26. 204 — 9v3 + 10x? +x —2 =0. 

27. By actually finding the roots, verify the result of Ex. 23. 

28. Verify the result of Example 3 (Sec. 11.11). 

In each of Exs. 29-33, transform the given equation into another whose roots 

are less by the indicated number. 

29. 3a3 — 4a% — 35a +12 =0; 1. 30. 223 — 922 4+ 122 — 4 =0; 3. 

31. a4 — 228 — 2? + 62 —7 =0; 2. 

32. 2x4 + 6u3 + 7x? + 2x —2 =0; 0.3. 

33. 2x3 + 302 +2 —1 =0; 0.01. 

34. By actually finding the roots, verify the result of Ex. 29. 

35. Transform the equation of Ex. 29 into another whose roots are greater by 1. 
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11.12. HORNER’S METHOD 

We now consider the determination of irrational roots by a process 
known as Horner's method of approximation. This method is applicable 
only to rational integral equations, but it has the advantage that the 
computations are much simpler than in linear interpolation (Sec. 11.10). 
The ease of computation is due to the fact that each digit in the root is 
determined individually. 

The reasoning underlying Horner’s method is very simple. Say that a 
given rational integral equation f(x) = 0 has an irrational root which, 
correct to 3 decimal places, is 2.124. In order to determine this root we 

first establish the fact that the given equation has a root between 2 and 3 
(Sec. 11.5). Next we diminish the roots of f() = 0 by 2, obtaining the new 

equation f,(7,) = 0 with the root 0.124 (Sec. 11.11). We then show that 
fi(%) = 0 has a root between 0.1 and 0.2 and diminish its roots by 0.1, 

obtaining a new equation /f,(7,) = 0 with the root 0.024. Repeating the 
previous step, we show that f,(v,) = 0 has a root between 0.02 and 0.03 and 

diminish its roots by 0.02, obtaining a new equation f,(v;) = 0 with the 
root 0.004. Continuing this process, we can obtain the root accurately to 

any number of decimal places. The details of the method are illustrated 

and explained best by means of an example. 

Example. Show that the equation 

(1) f@=2 + 5247 -—x—-—9=0 

has a root between | and 2, and find it correct to 3 decimal places by 

Horner’s method. 

SOLUTION. By synthetic division we find f(1) = —4 and f(2) = 17 so 

that equation (1) has a root between | and 2. 

We next diminish the roots of equation (1) by 1. 

The transformed equation 

(2) fila) = 23 + 82,2 + 12a,-4= 0 
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has a root between 0 and | which we now locate between two successive 
tenths. Since this root of (2) is small, its cube and square are still smaller, 
so that for a first approximation we may drop the terms in 2,3 and 2,’, 
thus obtaining the trial equation 12x, — 4 = 0 with the solution x, = 0.3. 
Because this is only an approximation, we must test it in equation (2). 
By synthetic division we find f,(0.3) = 0.347 and f,(0.2) = —1.272. Hence 

equation (2) has a root between 0.2 and 0.3. 

We therefore diminish the roots of equation (2) by 0.2. In this operation 
it is convenient, as indicated, to leave sufficient space for the necessary 
number of decimal places. 

1 + 8.0 + 12.00 — 4.000 0.2 
+ 0.2 + 1.64 + 2.728 

1+ 8.2 + 13.64 roe 
+ 0.2 + 1.68 

14+ 84 eae 
+ 0.2 

1|+8.6 

The transformed equation 

(3) Foleo) = x, + 8.67," 4+ 15.322, — 1.272 = 0 

has a root between 0 and 0.1 which we locate between two successive 

hundredths. From the last two terms of (3), we have the trial equation 

15.32%, — 1.272 = 0 with the solution x, = 0.08%. By synthetic division 

we find f,(0.08) = 0.009152 and (0.07) = —0.157117. Hence equation 
(3) has a root between 0.07 and 0.08. 

We therefore diminish the roots of equation (3) by 0.07. 

1 + 8.60 + 15.3200 — 1.272000 0.07 

+ 0.07 + 0.6069 + 1.114883 
1 + 8.67 + 15.9269 ie 

+ 0.07 + 0.6118 

1 + 8.74 |+ 16.5387 

+ 0.07 

(ieee St 

The transformed equation 

(4) fx(tg) = %g2 + 8.81x52 + 16.5387, — 0.157117 = 0 

has a root between 0 and 0.01 which we locate between two successive 
thousandths. From the last two terms of (4), we have the trial equation 
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16.5387, — 0.157117 = 0, with the solution x, = 0.009*. By synthetic 
division we find f,(0.009) = —0.007554361 and f,(0.01) = 0.009152. 
Hence equation (4) has a root between 0.009 and 0.01. 

We therefore diminish the roots of equation (4) by 0.009. It is left as an 
exercise to the student to show that the transformed equation is 

(5) fg(%q) = 243 + 8.83722 + 16.6975232, — 0.007554361 = 0, 

from which the trial equation is 16.697523x, — 0.007554361 = 0, with 

the solution x, = 0.0004*. At this stage, since the root of (5) is very small, 
the solution of the trial equation is quite accurate. Hence the required 
root 1s 

«= 1+ 0.2 + 0.07 + 0.009 + 0.0004 = 1.2794 

and, accurate to 3 decimal places, is 1.279. 

NOTES. 1. For expository purposes, the solution above is spread out. In actual 

practice the student should write the solution in compact form, showing only the 
operations of dimininishing the roots and omitting the transformed equations 

whose coefficients are already available. 

2. It is highly important to test each successive digit of the required root to 
make certain that the root of each transformed equation lies between two 

successive values. 

3. As we proceed further with the approximations in Horner’s method, the 

roots of the transformed equations become smaller and smaller, so that the trial 

equations become more and more accurate and may often be used to obtain 

additional decimal places. 

4. To find a negative root of f(x) = 0 by Horner’s method, we find the corre- 

sponding positive root of f(—x) = 0 and change its sign. 

EXERCISES. GROUP 43 

In each of Exs. 1-6, find the indicated root of the given equation correct to 

two decimal places, using Horner’s method. 

Oe ea | Oe seen 4s 

eo — 32" -- 137 — 24 = 0: 2 <a =< 3; 

x? + 10x? + 34x — 60 = 0; 1 <a <2. 

tS = (Oe 46 shee 36 SQ SH Os Sl Se > aX 

_@ + 3a" — Sez — 47 = 053 <a <4. 

6. v2 — 9u* + 24e — 19 = 0; 2 <a =< 3. 

In each of Exs. 7-11, find the indicated root of the given equation correct to 

three decimal places, using Horner’s method. 

Tog iste a — 6 = 0; | <2 = 2. 

Sa — 4e2 — 50 +20 = 0; °—-2 > a> —3: 

9. a? + 4a? + 64 —97 =0;3 <u <4. 

el Ret WSS Ie 
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10. «2 + 403 + 7a? — 22 —21 =0; 1 <@ <2. 

11. 2 — 62° 4+ 122? + Ile —41 =0;2 <a <3: 

12. By Horner’s method, solve Ex. 7 of Group 42 (Sec. 11.11). 

13. By Horner’s method, solve Ex. 8 of Group 42 (Sec. ALT 

14. By Horner’s method, solve Ex. 9 of Group 42 (Sec. 11.11). 

15. By Horner’s method, solve Ex. 10 of Group 42 (Sec. ibe D). 

16. Show that decimals may be avoided in Horner’s method by multiplying the 

roots of each transformed equation by 10. 

17. In determining the root of the first transformed equation in Horner’s 

method, a more accurate result may be obtained by using the last three terms as a 
trial equation. Show this for equation (2) in Sec. 11.12 by finding-the positive 
root of the quadratic equation 8x,? + 127, —4 =0. 

18. Verify the transformed equation (5) of the Example of Sec. 11.12. 

19. By Horner’s method, find the positive root of 

x* — 2x3 — 9x* — 4x — 22 = 0, correct to 3 decimal places. 

20. By Horner’s method, find the negative root of 

xt — 2x3 — 9x? — 4x — 22 = 0, correct to 3 decimal places. 

21. By Horner’s method, find the positive root of 

4x* — 19%% — 23x — 19 =0, correct to 3 decimal places. 

22. By Horner’s method, find the negative root of 
4a4 — 192% — 23x — 19 =0, correct to 3 decimal places. 

23. By Horner’s method, find the principal cube root of 7, correct to 3 decimal 

places. Hint: Find the positive root of x? — 7 = 0. 

In each of Exs. 24-27, find the principal indicated root, correct to 3 decimal 

places, by Horner’s method. 

24. V15. ee BO. 26. 11. OTe DT. 
28. The dimensions of a rectangular box are 5 ft, 8 ft, and 9 ft. If each 

dimension is increased by the same amount, the volume is increased by 440 cu ft. 
By Horner’s method, find the increase in each dimension. 

29. Equal squares are cut from the corners of a rectangular piece of card 

board 14 in. long and 10 in. wide, and the remaining rectangular portions along 

the sides are folded up to form an open box whose volume is 100 cu in. By 
Horner’s method, find the side of each square cut out. (Two solutions.) 

30. By Horner’s method, find the solutions of the system 
wv +y=7, y? +x =11, correct to 2 decimal places. Illustrate the results 

graphically. 

11.13. RELATIONS BETWEEN ROOTS AND COEFFICIENTS 

We have previously seen that the nature and value of the roots of a 
rational integral equation depend upon the coefficients. We will now 
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obtain certain relations between the roots and coefficients of such an 
equation, relations which are often useful in its solution. 

We will first form several equations with given roots. Thus, by Sec. 11.6, 
the equation whose roots are r, and ry is 

(t& — rye — ry) = 0 

Similarly, the equation whose roots are rj, rz, and rz is 

(@ — ry)(x — rele — r3) = 0 

or a3 — (ry + ro + rg)t? + (re + nrg + rers)% — Myolg = 0. 

Similarly, the equation whose roots are ry, ra, rz, and r, may be written 
in the form 

wt — (ry tro tre try)? + (re + rg + rts + org + org + rary)? 

— (Talos 1 aloha + al ala H Pol sla)® 4+ Molar, = 0. 

An examination of these equations discloses the following facts: 

1. The leading coefficient is unity. 
2. The coefficient of the second term is equal to minus the sum of all the 

roots. 
3. The coefficient of the third term is equal to plus the sum of the pro- 

ducts of the roots taken two at a time. 
4. The coefficient of the fourth term is equal to minus the sum of the 

products of the roots taken three at a time. 
5. The last term is equal to the product of all of the roots, the sign being 

plus or minus according as the number of roots is even or odd. 

From these facts we may infer similar results for the general rational 
integral equation of degree n. That this inference is correct may be estab- 
lished by mathematical induction; we record it as 

Theorem 12. Jf r,,72,°°*,1, are the n roots of the rational integral 

equation 
Pea Oe Gat 2? 1a, st + a, = 0 

with leading coefficient unity, then the roots and coefficients are connected 

by the following relations: 

Q= (77+ fe ot Ta); 

Ag = Nyy + lg t+ + nal 

a3 (Thos atilarelact tae = taenetl n> 

sini! is ois ue) eee n8) (ah ele! a) 6: 0: ve) “air, <7 e¥iee 
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notes. 1. It is important to observe that the relations in Theorem 12 hold only 

when the leading coefficient is unity. 

2. It will now be seen that Theorem 3 (Sec. 5.5) is the special case of Theorem 

12 forn = 2. 

Example 1. Solve the equation 3x? — 2a? — 27x + 18 = 0 if one root 

is the negative of another root. 

SOLUTION. Let the three roots be represented by r,;, —r,, and r,; their 

sum is equal to ry. 
Before applying Theorem 12, we divide the given equation through by 

3 so as to obtain a leading coefficient of unity. Then the equation assumes 
the form . 

a — 22? — 9x +6 =0, 

and the sum of the roots is equal to 3. Hence r, = 3. 

We may now depress the given equation by removing the root 3, using 
synthetic division. Thus 

Ba Pa 
Sp Oe 

3+0-—27+ 0 

The depressed equation is 3x” — 27 = 0, with the solutions x = +3. 

Hence the required roots are 3, 3, —3. 

Example 2. The roots of the equation «* — 322+ kx +8 =0, in 

some order, are in arithmetic progression. Find these roots and the value 
of the coefficient k. 

SOLUTION. We may represent the three roots by a — d, a, a + d; their 
sum is equal to 3a. From the given equation, the sum of the roots is equal 
to 3. Hence 3a = 3 and a = | is one of the roots. 

By letting x = | in the given equation, we may obtain the value of k and 
then proceed to find the remaining two roots as in Example 1. However, 

we may obtain these roots without first finding k. Since a = 1, the three 
roots are 1 — d, 1, 1 + d, with the product 1 — d?. From the given 
equation, the product of the roots is equal to —8. Hence 1 — d? = —8 
and d= +3. For d = 3, the roots are —2, 1, 4; ford = —3, they are 

4,1, —2. 
The student may easily verify that k = —6. 

EXERCISES. GROUP 44 

1. Solve the equation 42° — 1222 + 3x +5 = O if the roots, in some order, 
are in arithmetic progression. 
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2. Solve the equation 2° + 322 — 6x — 8 = Oif the roots, in some order, are 
In geometric progression. Hint: Denote the roots by a/r, a, ar. 

3. Solve the equation x3 — 92 + kx — 24 =O and find the value of & if the 
roots, in some order, are in arithmetic progression, 

4. Solve the equation 3x3 + kx? — 7x + 3 = 0 and find the value of & if the 
roots, in some order, are in geometric progression, 

5. Solve the equation 4x3 — x? — 16x + 4 = 0 if one root is the negative of 
another. 

6. Solve the equation x? — 1022 + 1lx + 70 = 0 if the sum of two of the 
roots is 3. 

7. Solve the equation x* + 2x? — 15x — 36 = Oif it has a double root. 

8. Solve the equation 9x3 — 4522 — 52x — 12 = 0 if one root is double 
another. 

9. Solve the equation 3x3 + 172? — 87x + 27 = Oif oneroot is the reciprocal 

of another. 

10. Solve the equation x? + 2x? — 5x — 6 = Oif one root exceeds another by 2. 

11. Solve the equation 2x3 + 9x? + 10x + 3 = 0 if the roots are in the ratio 

[LSPs 

12. Solve the equation 2x? — 11x? — 7x + 6 = 0 if the product of two of its 

roots is 3. 

13. Solve the equation x? — 2x? — 5x + 6 = 0 if the quotient of two of its 

roots is 3. 

14. Solve the equation x4 — 5x3 + 6x? + 4x — 8 = Oifit has a triple root. 

15. Solve the equation 477 + 28x? + 33x? — 56x + 16 =0 if it has two 

double roots. 

16. Solve the equation x* — 8x3 + 14x? + 8% — 15 = 0 if the roots, in some 

order, are in arithmetic progression. Hint: Denote the roots by a — 3d, a —d, 

a+d,a+3d. 

17. Solve the equation 9x* — 63x? + 53x? + 7x — 6 = 0 if one root is the 

negative of another. 

18. Write out the relations of Theorem 12 (Sec. 11.13) when the leading coeffi- 

cient ad) # 1. 

19. For a rational integral equation, show that if the second term is lacking, 

the sum of the roots is zero, and that if the last (constant) term is lacking, at least 

one of the roots is equal to zero. 

20. By considering the equation #” — | = 0, show that (a) the sum of the n 

nth roots of unity is equal to zero; (b) the product of the n nth roots of unity is 

equal to —1 if 7 is even and is equal to +1 if nis odd. (See Ex. 17 of Group 29, 

Sec. 8.9.) 

21. If ry, ro, and rg are the roots of the equation 6x7 — 11a? — 3x +2 =0, 

1 1 1 ’ 
evaluate — + — + — without actually finding the roots. 

ry lg rs 
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22. In Ex. 21, evaluate r,? + r.? + rs? without actually finding the roots. 

23. Find the relation which must exist among the coefficients of the equation 
x? + ax* + be +c =O if one of its roots is to be the negative of another root. 
Verify this result for Example 1 of Sec. 11.13. 

24. Find the relation which must exist among the coefficients of the equation 

x? + ax* + bx + c = Oif the roots, in some order, forma geometric progression. 

Verify this result for Ex. 2. 

25. Establish Theorem 12 (Sec. 11.13) by mathematical induction. 



12 

Partial fractions 

12.1. INTRODUCTION 

In Sec. 2.11 we considered the problem of finding the sum of two or more 
simple algebraic fractions. This sum was found to be a single fraction 
whose denominator is the least common multiple of the denominators 
of the given fractions. Thus, we may readily verify the following 
addition: 

1 us 2 pi yeaa 5g te 

elem — st oe al gen ep ee 
(1) 

In this chapter we consider the inverse problem, namely, that of resolving 
a given fraction into the sum of simpler fractions which are called its 
partial fractions. Thus, in relation (1), the three fractions in the left 
member are the partial fractions of the single fraction in the right member. 
The resolution of a given fraction into its partial fractions is required in 
other branches of mathematics, for example, in certain problems of 

integration in the calculus. 
We have previously noted (Sec. 2.11) that an improper fraction may be 

expressed as the sum of a polynomial and a proper fraction. In the 

material following, it is to be understood that only proper fractions in their 
lowest terms will be resolved into partial fractions. Furthermore, we shall 

consider only fractions in which the numerator and denominator are 
polynomials with real coefficients. Since the denominators of the partial 
fractions to be determined are factors of the denominator of the given 

fraction, it follows that such denominator must have linear or irreducible 

quadratic factors with real coefficients, in accordance with Corollary 2 of 

Theorem 6 (Sec. 11.7). 

265 
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12.2. THEOREM ON PARTIAL FRACTIONS 

The method of resolving a given proper fraction into its partial fractions 

is based upon the following theorem, whose proof is omitted, for it is 

beyond the scope of this book. 

Theorem. Any given proper fraction, reduced to its lowest terms, may be 
expressed as the sum of partial fractions of the types classified as follows: 

1. To each linear factor ax + b which occurs only once as a factor of the 

, where denominator, there corresponds a partial fraction of the form 

A #0 is a constant. 

2. To each linear factor ax + b which occurs k times as a factor of the 
denominator, there corresponds the sum of k partial fractions of the form 

ax + b 

Ay Ay Ax 
ae see at , 

ax+b (ax+ by (ax + b)/* 

where A,, Ay,***, A, are constants and A,, ~ 0. 

3. To each quadratic factor ax® + bx + ¢ (irreducible in the field of real 
numbers) which occurs only once as a factor of the denominator, there 

At ep: 
corresponds a partial fraction of the form ena, where A and B are 

constants not both equal to zero. oe race tice 
4. To each quadratic factor ax® + bx + c (irreducible in the field of real 

numbers) which occurs k times as a factor of the denominator, there corre- 

sponds the sum of k partial fractions of the form 

A,x + B, Agt + By — A,x + B, 

ax*+ba+e (ax? + bx +c) (ax? + bx +c)’ 

where Ay, B,, As, By,°** , A,, B, are constants and A,, and B,, are not both 

equal to zero. 

Notes. 1. Ifa given fraction is improper, it should first be expressed as the sum 

of a polynomial and a proper fraction. The theorem should then be applied to 

this proper fraction. 

2. The types listed in the theorem are termed the simplest partial fractions. 

3. The student may raise the question as to whether there are partial fractions 

Ax® + Be +C 
f the f ——_————__... i it 1 i of the form fk hh ee The answer is yes, but it is not the simplest 

partial fraction. Since we are dealing with real coefficients, it follows from 

Corollary 2 of Theorem 6 (Sec. 11.7) that the cubic denominator may be expressed 

either as the product of three linear factors or as the product of a linear factor 

and a quadratic factor. Hence the fraction above may be expressed as the sum 

of either two or three simpler fractions. 
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The theorem above gives the form of the partial fractions; it remains 
to determine the values of the various constants appearing in those 
fractions. In the remainder of this chapter we will explain the process by 
means of examples illustrating all four types. 

12.3. LINEAR FACTORS, ALL DIFFERENT 

Here we consider a problem involving type | of the theorem of Sec. 12.2. 

Example. Resolve pues Oirontsmcimplest at 

; Gale 7s Ooms ICStapDantia 

fractions. (x — 1)(@ + 1)(@ + 2) P P 

SOLUTION. Since the factors of the denominator are all linear and 

different, it follows from the theorem that we may write the identity 

Sz +1 Wace, 4 B " Cc 

(e— Ihe ihe 42) 9 2 = 1 a+ 1 De 
(1) 

where A, B, and C are constants to be determined. Relation (1) holds for 

all values of x except 1, —1, and —2, for each of these values makes a 

denominator zero. Clearing (1) of fractions, we have the identity 

(2) Se+1 = A@ +4 1)@ + 2) + Be — I+ 2) + Ca — IY@ + I), 

which, in view of relation (1), holds for all values of x except possibly 1, 

—1, and —2. Hence, by the corollary of Theorem 5 (Sec. 11.6), relation 
(2) holds for a// values of x including 1, —1, and —2. 

There are two methods for determining the constants A, B, and C. 

METHOD 1. To determine the three constants A, B, and C, we need three 

independent relations involving them. These three relations may be 
obtained by substituting any three distinct numerical values for x in the 
identity (2). However, it will be much simpler in this case if we substitute 

those values of 2 which were excluded from relation (1), namely, 1, —1, and 

—2, for each such substitution will eliminate all but one of the constants. 

Thus, for z = 1, the identity (2) becomes 

5+1= A(1 + 1)(1 + 2), whence A = 1. 

Similarly, for x = —1, the identity (2) becomes 

—5+1= B(—1 — 1)(—1 + 2), whence B = 2. 
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Finally, for x = —2, the identity (2) becomes 

—10 + 1 = C(—2 — 1)(—2 + 1), whence C = —3. 

Accordingly, we have as our required solution: 

pel ae i ore aera 

(x —1)\@+1)\@+2) e«—1 e+l #42 

A complete check of this result may be obtained by combining the three 

partial fractions in the right member of (3), as in Sec. 2.11. 

(3) 

METHOD 2. In this method, we expand the right member of (2) and 
collect the coefficients of the various powers of x. Thus, 

Sa +1 = A(a? + 3a + 2) + B(x? + x — 2) + C(x? — 1), or 

(4) Set1=e=A+B8+ OC? + GA+t+ Bx + 2A —2B—C. 

Since (4) is an identity, it follows from Theorem 5 (Sec. 11.6) that the 

coefficients of like powers of x are equal, and we have 

A+B+C=0, 

3A + B=5, 

2A —2B—C=1. 

The solution of this system of equations (Sec. 4.7) is readily found to be 
A=1,B=2, C = —3, and is in agreement with the result of Method 1. 

12.4. LINEAR FACTORS, SOME REPEATED 

As an illustration of a problem involving type 2 of the theorem of Sec. 
12.2, we have the following 

5a24+-4¢ +2 . safes : 
Example. Resolve @— aa tse into its simplest partial fractions. 

SOLUTION. This problem involves both types 1 and 2 of the theorem of 
Sec. 12.2, in accordance with which we write the identity 

Sx* + 4 2 (1) a” + 4a + = A 4 B “i G . 

(e—4\(e#+3) 2-4 2x#4+3 (+3) 

Clearing (1) of fractions, we have the identity 

(2) Sa? + 4a +2 = A(x + 3)? + Blu — 4)(x + 3) + C(x — 4), 

which, by the same argument used in the example of Sec. 12.3, holds for 
all values of z, 
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Once again, there are two methods for determining the constants A, B, 
and C. 

METHOD 1. Here, since one linear factor is repeated, it is not possible to 
obtain all three constants immediately by substituting certain values as in 
the example of Sec. 12.3. However, we may determine two of the constants 
in this manner. Thus for x = 4, the identity (2) becomes 

80 + 16 + 2 = A(4 + 3)", whence A = 2. 

For x = —3, the identity (2) becomes 

45 — 12 + 2 = C(—3 — 4), whence C = —5. 

There is no value that we can now substitute for x which will eliminate A 

and C and enable us to obtain B at once. However, if we use the values of 

A and C already obtained and some simple value of a, say 0, we can readily 

obtain B. Thus, if we substitute A = 2, C = —5, and 2 = Oin the identity 

(2), we have 

2 = 233)? + B(—4)GB) + (—5)(-4), 

whence 2 = 18 — 128 + 20, 128 = 36, B="3: 

Hence the required partial fractions are given by 

Ver ee 2 2 4 3 7 5 

(SoA 3y 2 S43 (ey 

METHOD 2. We proceed here as in Method 2 of Sec. 12.3. Expanding the 

right member of (2), we have 

5a? + 44 +2 = A(x? + 62 + 9) + B(x? — x — 12) + Civ — 4), or 

Sa2 + 4a +2 = (A + Bx? + (6A — B+ Che + 9A — 12B—4C. 

Equating the coefficients of like powers of x, we have the system 

A+B=5, 

6A—B+C=4, 

9A — 12B—4C = 2, 

whose solution is readily found to be A = 2 Bi =13,.C = —)5, and is 1n 

agreement with the result of Method 1. 
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EXERCISES. GROUP 45 

Partial Fractions Ch. 12 

In each of Exs. 1-20, resolve the given fraction into its simplest partial fractions 

and check the result. 

3: 

3x +6 

(w — 2)(@ + 4) 
x—9 

a? — 9" 
3a? — Sa — 52 

 (@ + 2)(@ — 3)\@ + 5)" 
—2a? + 14x + 18 

" @ — 3)\Q2? —a# —1)° 

x3 + 2x? — J 

e+e —6 

3x — 1 

(oes 1) 

Ox? + 16x72 + 3x — 10 

x(x + 5) 

3a3 + 10x22 — 5x 

Se iG ly 
Qa? + 372 — 15a — 8 

"(@ + 2)(a? — 3a + 2)° 

2u* — 4x2 —@ +2 

(a? — x)? 

Pe 
Tee 

(2x + 1)(w — 3)" 
9x +7 

2 + 2 — 3 

16 — 10x 

2a? +x +9 Gi 

a?) = 2a? — 5a + 6 

x? + lla? + 37x 4+ 31 

xv? + 602 + 5x —12 © 

xu? + 3x —2 

2u3 + 7x2 + 15x + 8 

3a3 + 4a? — 21a — 103 

" (w@ — 3)(a3 + 5x? — 8x — 48) ° 

4x4 — 3x? + 6x — 3 

© (@ = Ie? = 1 
xv + 4a4 — 1523 — 14~?2 + ow + 250 

12.5. QUADRATIC FACTORS, ALL DIFFERENT 

As an illustration of a problem involving type 3 of the theorem of Sec. 
12.2, we have the following 

Example. Resolve 

fractions. 

33 — 9? + Ag 
into its simplest partial 

SOLUTION. Since both factors of the denominator of the given fraction 
are irreducible in the field of real numbers, we may write the following 
identity in accordance with the theorem of Sec. 12.2: 

(1) 
3 ede 

(+ 1)(e?—-e2+1) 241 

ew Ae AB Cx + D 

eres 
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Clearing (1) of fractions, we have the identity 

(2) 328 — a? + 4x = (Ax + B(x? — w + 1) + (Ce + D/(a? + 1). 

As before, there are two methods for determining the constants A, B, C, 
and D. 

METHOD |. In this method we substitute four different simple values for 
«in the identity (2). This gives us four independent relations involving the 
constants. Thus, 

For «£=0, 0= B+ D. 

Pom 2140 (47 BD (C4 DQ), 
or A+B+2C+2D=6. 

For «= —1, —8 = (—A + B)(3) + (—C + D)(2), 

or 3A —3B4+2C—2D=8. 

For «=2, 24—4+48 = (24 + B)(3) + 2C + D)(5), 

or 6A + 3B + 10C + 5D = 28. 

It is left as an exercise to the student to show that the solution of this 

system of four equations is A= 1, B= —1, C=2, D=1. Hence the 

required partial fractions are given by 

ao" — a As Paes! 2% + 1 

(DG al) ee ot an oo 

METHOD 2. The procedure here is the same as in Method 2 of the pre- 
ceding article. Expanding the right member of (2), we have 

323 — 2? + 4x = Ax? — (A — B)a? + (A — B)x 

+ B+ Cz? + Dz? + Cr+ D, 

or 303 — a2 + 4x = (A + C)az? — (A — B— D)x? 

+(A—B+ Cie + B+ D. 

Equating the coefficients of like powers of x, we have the system 

AAC = 3s 

A= B=) = 

A—B+C=4, 

BtD=0, 

whose solution is found to be A = 1, B= —1, C= 2, D=1, and is 

therefore in agreement with the result of Method 1. 
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12.6. QUADRATIC FACTORS, SOME REPEATED 

As an illustration of a problem involving type 4 of the theorem of Sec. 

12.2, we have the following 

4x4 + 134% — 4x + 14 

@ — D@? + 2p 
SOLUTION. In accordance with the theorem of Sec. 12.2, we may write 

the identity 

4x* + 132% — da + 14 _ A But C Dx +E 

Example. Resolve 

fractions. 

into its simplest partial 

1 = eee 
(1) (a — 1)(z + 2)? a lee Mat 2 (a? Py 

Clearing (1) of fractions, we have the identity 

(2) 4x4 + 13a2 — 4x + 14 = A(x? + 2)? 

+ (Bx + C)(x — 1)(x? 4+ 2) 

+ (Dx + E)(x — 1). 

We have the same two methods of the preceding section for determining 

the constants A, B, C, D, and E. 

METHOD |. We have already noted (Sec. 12.3) that when a linear factor 
is involved, it is possible to substitute a particular value of x and determine 

one constant immediately. Thus, substituting x = | in the identity (2), we 

fen 27 = 9A, whence A = 3. 

For the remaining constants, we will substitute simple values for x in the 
identity (2). Thus, 

for «=0,A=3, 14 = 3(4) + C(—1Q2) + E(-J), 

or 20+ £ = —2. 

Fee gs il, Abe 8h 

35 = 3(3)? + (—B + C\(—2)(3) + (—D + E\(—2), 
or 6B — 6C + 2D — 2E=8. 

FOr eon As==93, 

64 + 52 —8 + 14 = 3(6)? + (2B + C)(1)(6) + (2D + E)(1), 

or 2B + 6C + 2D + b= 14. 

Or 2S a2) Ale 3) 

64 + 52 +8 + 14 = 3(6)? + (—2B + C)(—3)(6) + (—2D + E)(-3), 

or 30B = 18 Ci 6 Di 33 Bie=130, 
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The solution of this system of four equations is found to be B = 1, 
C=1,D=0,£ = —4. Hence the required partial fractions are given by 

4a* + 132° — 4x 4+ 14 _ 3 Sei SarGt on 4 

(a — 1)(a® + 2)? et G2) 

METHOD 2. Expanding the right member of (2), we have 

4at + 132% — 4x + 14 = A(xt + 402 + 4) + Bot + (C — B)a 

+ (2B — C)a? + 2(C — B)x — 2C + Dx? 

ti Dah, 
or 4x4 + 1327 — 4x + 14 =(A + B)x* + (C — B)2? 

+ (44 + 2B — C + D)z? 

+ (2C —2B— D+ E)ju+ 4A —2C— E. 

Equating the coefficients of like powers of a, we have the system 

A+ B=4, 

C—B=0, 
SAG 2B 5, 

2 a el 

44 —2C—E= 14, 

whose solution is found to be A = 3, B= 1,C=1, D=0, E = —4, and 

is therefore in agreement with the result of Method 1. 

EXERCISES. GROUP 46 

In each of Exs. 1-20, resolve the given fraction into its simplest partial 

fractions, and check the result. 

: 3u2 — 4x + 5 5 5a? + 8a + 5 

"(@ — 1)? +1) 0 “ g8 4+ 3a? + 37 +27 

“ 2a? — 4x2 + da — 4 A 3x3 + 4? + 27 —2 

G1) 2) ese +1) 
2a? +x +43 —10a? — 24x — 48 

4x3 4+ 3x? + 18% —5 3a? — 9x? + 8a — 10 

2at + 4a? + 4o? + ow — 6 xe? + Jax? — x? + 9x — 12 

ees | |) ete +2 
au? + 2x + 3a Qu® + 4x3 — 3x? + 3a — I 

Ses 12 11. (x2 +a" + 1? (x? + 1)8 
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18) 

14. 

iS: 

16. 

We 

18. 

19. 

20. 

Partial Fractions 

5a? — 13a4 + 19”? — 22x? + lla — 4 

eS ee 

Tat — 11a? + 1207 — 14% + 27 

=). C a) ae 
2a> + 9x? + 3x2 + Su + 4 

x® + 203 + 1 

—4x° + Tat — 4a3 + 100? +7 

ea 
508 — 52°) - 627 — 8a2 4 5a 3a -2 3 

SSG eS) 
2a? — Tx® + 10x25 — 16a4 + 1823 — 16x? + lle — 4 

(x? + 1)?(a? — x + 1)? ; 

Ch, 12 

209 + 08 + 1307 + 10x® + 29x° + 244 + 29x23 + 182? 4+ 15x + 3 

(a? + 3)@? +1) 
w® + de> + [1a* + 16x + 21a? 4+ 12% 4+ 8 

(a? + 2)(a% + @ + 2)? ; 
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Permutations and 

combinations 

13.1. INTRODUCTION 

In this chapter we shall study the various arrangements and selections it 
is possible to make from a given set of objects. While this will lead to the 
solution of some problems which are interesting in themselves, it will also 

include many practical applications. For example, we can find out how 
many different telephone numbers or automobile license plate numbers are 
possible, using a given set of letters and digits. Furthermore, in connection 

with combinations, we shall again consider binomial coefficients and 
Pascal’s triangle (Secs. 7.5, 7.6). Finally, one significant aim of this chapter 
is to develop certain material required for the next chapter on the important 
subject of probability. 

13.2. FUNDAMENTAL THEOREM 

We first lay down the following 

Definition. Each of the different arrangements which can be made by 

taking all or part of a number of things is called a permutation. 
It should be noted that the order is paramount in a permutation. When 

we arrange the elements of a permutation in a certain order, we are said to 

permute those elements. 
For example, let us exhibit the different arrangements or permutations 

which can be made from the three letters a, b, and c, taken two at a time. 

They are six in number, namely, ab, ac, ba, be, ca, cb. 

275 
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In the next section we shall derive a formula for the number of permuta- 

tions of n different things taken r at a time. The proof is based on the 

following theorem, which, being basic, is appropriately called the funda- 

mental theorem. 

Theorem 1. (Fundamental Theorem). If one act can be performed in any 

one of p different ways, and if, after this act is performed in any one of these 
ways, a second act can be performed in any one of q different ways, then the 
total number of different ways in which the two acts can be performed 

together in the order stated is pq. 

PROOF. With each of the p different ways in which the first act can be 
performed, the second act can be performed in q different ways, that is, 
there are q different ways of performing the two acts together for each way 
of performing the first act. Hence, for all of the p ways in which the first 

act can be performed, the two acts together can be performed in a total 

of pq different ways. 

Corollary 1. Jf one act can be performed in p different ways, a second 
act in q different ways, a third act in r different ways, and so on, then the 
total number of different ways in which all these acts can be performed 
together in the order stated is pgr::- 

Corollary 2. If x acts can be performed successively in p different ways 
each, then the total number of different ways in which all of these x acts 
can be performed successively is p”. 

As an illustration of Theorem 1, consider the example above listing the 
six permutations of the three letters a, b, c taken two at a time. We may 

regard this problem as one involving two successive acts consisting of 

filling two places or positions in order. The first place may be filled in three 
different ways by using each of the three letters a, b, c. After the first place is 
filled, two letters are left for the second place, which may therefore be filled 

in two different ways. Hence, by Theorem 1, both places may be filled 
in 3 xX 2 = 6 different ways. 

As we have previously noted, a formula for permutations will be derived 
in the next section. However, many problems may be solved without such 
a formula by using Theorem | and its corollaries and by considering the 

various acts to be performed as that of filling places or positions in order. 
We will illustrate the procedure by several examples. 

Example 1. There are five roads between cities A and B, and four roads 
between cities B and C. Find the number of different ways a person may 
travel from A to C by way of B. 

SOLUTION. We first write two short horizontal lines thus, —, —, to 
indicate the two places to be filled. The first place may be filled in five 
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different ways since the first act of traveling from A to B may be performed 
in five different ways. Similarly, the second place may be filled in four 
different ways since the second act of traveling from B to C may be per- 
formed in four different ways. Our two places will now appear thus: 5, 4. 
Hence, by Theorem 1, the required number of different waysis5 x 4 = 20. 

Example 2. Find the number of different three-figure integers which 
can be formed from the digits 2, 3, 5, 7 if (a) repetitions are not allowed; 

(b) repetitions are allowed. 

SOLUTION. (a) Consider, as in Example 1, that we have indicated the 

three places to be filled. The first place may be filled in four different ways. 
With the first place filled, the second place may be filled in three different 
ways by the remaining three digits. With the first two places filled, the 
third place may be filled in two different ways by the remaining two digits. 
Our three places will now appear thus: 4, 3,2. Hence, by Theorem 1, the 
required number is the product 4 x 3 x 2 = 24. 

(b) If repetitions are allowed, the three filled places appear thus: 

4, 4, 4, and the required number is the product 4 x 4 x 4 = 64. 

Example 3. In Example 2(a), how many of the integers are even? 

SOLUTION. For even numbers, the third place (units) must be filled by 
the digit 2, and this can be done in only one way. From the remaining 

three digits, the first place (hundreds) may be filled in three different ways, 
and the second place (tens) may be filled in two ways. Hence, by Theorem 

1, the total number of even integers is3 xX 2x 1 = 6. 

EXERCISES. GROUP 47 

1. Establish Corollary 1 of Theorem 1 (Sec. 13.2). 

2. Establish Corollary 2 of Theorem 1 (Sec. 13.2). 

3. Solve Example 3 (Sec. 13.2) if repetitions are allowed. 

4. A building has 6 doors. In how many different ways can a person enter 

the building by one door and leave by a different door? 

5. Find the number of different arrangements of the 4 letters a, b, c, d taken 

3 at a time. 

6. A club of 12 members is to elect a president, vice-president, secretary, and 

treasurer. How many different sets of officers may be chosen if each member is 

eligible for any office? 

7. Solve Ex. 6 if 2 specific members only are eligible for the office of president 

but are also eligible for all the other offices. 

8. Solve Ex. 6 if 2 specific members only are eligible for the office of president 

but are not eligible for any other office. 
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9, Find the number of different two-figure integers which can be formed from 

the digits 1, 2, 4, 7, 8 if (a) repetitions are not allowed; (b) repetitions are allowed. 

10. In Ex. 9 find the number of even and the number of odd integers if (a) 

repetitions are allowed; (b) repetitions are not allowed. 

11. Signals are formed from different colored flags by placing them one above 

the other ona pole. From 5 different flags, find the number of signals which can 

be formed by using (a) 3 of the flags; (b) 4 of the flags; (c) all of the flags. 

12. In Ex. 11, find the total number of signals which can be formed by using one 

or more of the 5 flags. 

13. A tossed coin can fall in either of 2 different ways, head or tail. Find the 

number of different ways in which the following number of coins. can fall: 
(a) 2\coins: .(b);3 coins; (c) m coins: 

14. The faces of a cubical die are numbered from 1 to 6 and hence, when 

thrown, can appear in any one of 6 different ways. Find the number of different 

ways in which the following number of dice can appear when thrown: (a) 2 dice; 

(b) 3 dice; (c) n dice. 

15. If each of n dice has f faces numbered from | to f, find the number of 

different ways they can appear when thrown. 

16. Find the number of four-letter words (not necessarily pronounceable) 

which can be formed from 10 different letters of the alphabet if (a) repetitions are 

not allowed; (b) repetitions are allowed. 

17. Find the number of four-letter words which can be formed from 7 different 

consonants and 3 different vowels if the consonants and vowels are to alternate, 

repetitions not being allowed. 

18. Solve Ex. 17 if repetitions are allowed. 

19. In a certain state, automobile license plate designations consist of 5 places, 

the first 2 places being filled by any of the 26 letters of the alphabet and the last 
3 places by any of the 10 digits from 0 to 9 inclusive, except that zero may not be 

used for the third place. Find the total number of different designations which 

can be formed if repetitions of letters and digits are not allowed. 

20. Solve Ex. 19 if repetitions of both letters and digits are allowed. 

21. Telephone number designations consist of 7 places, the first 2 places being 

filled by any of 24 specified letters of the alphabet and the last 5 places by any of 
the 10 digits from 0 to 9 inclusive, except that zero may not be used for either of 

the third and fourth places. Find the total number of different designations which 

can be formed if repetitions of letters and digits are not allowed. 

22 Solve Bx. 2iit repetitions of digits only are allowed. 

23. In how many different ways may 5 people be seated in a row of 8 chairs? 

24. Solve Ex. 23 if the 5 people are to be seated in consecutive chairs. 

25. Determine the total number of positive integers less than 5000 which can 
be formed from the 8 integers, 0 to 7 inclusive, repetitions not being allowed. 
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13.3. PERMUTATIONS 

There are various symbols used to represent the number of permutations 
of n different things taken r at a time. We shall use the symbol P(n, r), 
which is very appropriate because the number of permutations is a function 
of mand r. For the value of P(n, r) we have 

Theorem 2. The number of permutations of n different things taken r at a 
time is given by the formula 

(1) Ptr) = n(n — 1) — 2):--m—rt),r<n. 

PROOF. The value of P(n, r) is equal to the total number of ways in which 

r places can be filled by n different things. The first place can be filled in n 
different ways, since all n things are available. The second place can then 

be filledin n — | different ways with the remainingn — | things. Similarly, 
the third place can be filled in n — 2 different ways, and so on. Continuing 
this process, we see finally that the rth place can be filled inn — (r — 1) = 
n —r + 1 different ways. Then, by the fundamental theorem (Theorem 1, 
Sec. 13.2), the total number of ways is given by relation (1) above. 

Corollary. The total number of permutations of n different things taken 

all at a time is given by 

P(n, n) = n(n — 1)(n — 2)---1 =n! (ec. 7.4) 

Example 1. How many different basket ball teams of 5 men each may be 
formed if 7 men are available to play any position? 

SOLUTION. This problem may, of course, be solved by the fundamental 

theorem as in Sec. 13.2. However, we may also consider the result to be 

equal to the number of permutations of 7 things taken 5 ata time, which, by 

Theorem 2, is 

(ia een Or ee 20), 

We next consider the case of determining the number of permutations of 

n things which are not all different. For example, let us determine P, the 

number of permutations of the five letters a, a, a, b, c, taken all at a time. 

Each of these P permutations contains the three identical letters a, a, a. If 

these three letters were all different from each other and from the remaining 

letters b, c, they could be permuted among themselves in 3! different ways 

for each of the P permutations, and all of the five different letters could be 
5! 

= 20. permuted in 5! ways. Hence P- Si= ee Whence. a 5 
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The general case is given by 

Theorem 3. Jf P represents the number of distinct permutations of n 

things taken all at a time, where p things are alike, q other things are alike, 

r other things are alike, and so on, then 

n! 

) gl aha 
PROOF. If we first replace the p like things by p things different from each 

other and from the remainder of the n original things, then for each of the 
P permutations we can obtain p! permutations by permuting the p new 
things among themselves. Hence, from the original P permutations, we 
thus obtain P - p! permutations each containing q like things, r like things, 
and so on. Similarly, by replacing the q like things by g different things, 
we obtain P: p! g! permutations, each containing r like things, and so on. 
Continuing this process, we finally obtain P- p!q!r!-- + permutations, each 
consisting of m different things. But, by the corollary of Theorem 2, the 
number of such permutations is nm! Hence, P- p! g! r!:-- =n!, whence 

relation (2) follows. 

Example 2. Find the number of different permutations which can be 

formed from the letters of the word paralle/, taken all at a time. 

SOLUTION. The word contains 8 letters, of which 3 are /, 2 are a, and the 

rest are all different. Hence, by Theorem 3, the number of different 

tee ey Sa & 

si EP) 
We now consider the number of arrangements of n different things 

around a circle. Each such arrangement is called a circular permutation. 
If n different objects, one of which we shall designate as A, are arranged in 
a straight line, we have a different arrangement, depending on whether 4 is 
at the head or foot of the line, the remaining n — 1 objects having the same 

position in each case. This is not true, however, for a circular permutation, 
for the position of A may be considered fixed and the remaining n — 1 
objects can then be arranged in (nm — 1)! different ways relative to 4. We 
record this result as 

permutations is = 3360. 

Theorem 4. The number of circular permutations of n different things is 
equal to (n — 1)! 

Example 3. A group of 3 girls and 3 boys is to be seated so that girls 
and boys alternate. Find the number of ways this may be done if (a) they 
are seated in a straight line; (b) they are seated around a table. 

SOLUTION. (a) We may first consider the girls to be seated in the odd- 
numbered seats and the boys in the even numbered seats; this may be done 
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in 3! 3! different ways. An equal number of different arrangements may be 
obtained by seating the boys in the odd-numbered seats and the girls in the 
even-numbered seats. Hence the total number of different ways is equal to 
2° 313! = 72. 

(b) We may first seat the 3 girls around the table in 2! ways in accordance 
with Theorem 4. There are then three alternate places left in which to seat 
the 3 boys; this may be done in 3! ways. Hence the total number of diff- 
erent ways is equal to 2!3! = 12. 

EXERCISES. GROUP 48 

1. Establish the corollary to Theorem 2 (Sec. 13.3). 

2. Show that P(m, r) = slay sla Sip 
(n —r)! 

3. If repetitions are allowed, show that the number of permutations of n 

different things taken r at a time is equal to n’. 

4. Evaluate (a) P(8, 2); (b) P(9, 3). 

. Evaluate (a) P(10, 4); (b) P(7, 4) + P(5, 4). 

. If P(m, 4) = 6P(n, 2), find n. 

EROS Sy) SC PAE Sip cal arely 

- WEIR (As 33) SONG PAY staal 77 

lied P(6ar a= Shor), ind 7. 

Ok UPA GL ia) = Se Ona), iinarel ye 

11. Eight players are available for a basket ball team of 5 men. If 2 particular 

men can play center only and the remaining 6 men can play any position except 
center, find the number of different teams which can be formed. 

Wel Tey Stony Wea 

12. Solve Ex. 11 if the 2 particular men can play any position. 

13. Find the number of different baseball teams of 9 men each which can be 

formed from 15 available players of whom 3 can pitch only, 2 can catch only, 

6 can play the infield only, and 4 can play the outfield only. 

14. Find the number of different permutations which can be formed from the 

letters of the word Alaska, taken all at a time. 

15. Signals are formed from 8 colored flags by placing them one above the 

other on a pole. Find the number of different signals which can be formed by 

using all 8 flags if 3 are red, 2 white, and the rest blue. 

16. Solve Ex. 15 if the top flag must be red. 

17. From a printing of one book, 6 copies are selected, and from a printing of 

another book, 5 copies are selected. Find the number of different ways these 

copies may be arranged on a shelf. 

18. In how many different ways can 3 nickels, 4 dimes, and 5 quarters be 

distributed among 12 children, each to receive a coin? 
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19. There are m identical things of the first kind and n identical things of the 

second kind. Find the number of different permutations which may be formed, 

each containing p of the first kind and q of the second kind. 

20. There are m copies of each of n different books. Find the number of ways 

in which they can be arranged on a shelf. 

21. Find the total number of positive integers that can be formed from the 
digits 1, 2, 3, 4, 5, repetitions not being allowed, and show that the ratio of odd to 

even integers is 3:2. 

22. Find the number of three-figure integers which can be formed from the 9 
cigttsily 2am D TL 

(a) all three digits must be different. 
(b) all three digits need not be different. - 

(c) all integers must be even, repetitions allowed. 

23. In how many ways may 6 different books be arranged on a shelf if 2 
particular books must be next to each other? 

24. Solve Ex. 23 if 3 particular books must be next to each other. 

25. Find the number of different ways 4 men and 3 women may be seated in a 
row of 7 chairs if the women are to be next to each other. 

26. Solve Ex. 25 if 8 chairs are used. 

27. In how many different ways may 5 different algebra texts and 4 different 
calculus texts be arranged on a shelf so that all books of one subject are together ? 

28. In how many different ways may 8 children stand in a circle? 

29. In how many different ways may 8 differently colored beads be made into 
a necklace? 

30. A group of 5 girls and 5 boys is to be seated in alternate chairs. Find the 
number of ways this may be done if (a) the chairs are in a straight line; (b) the 
chairs are around a circular table. 

31. Six men, including A and B, are to speak at a meeting. In how many 
different orders may they speak? 

32. Solve Ex. 31 if A must speak before B. 

33. Seven people are to be seated in a row. Find the number of different ways 
this may be done if 

(a) there are no restrictions. 

(b) two particular people must sit next to each other. 

34, Solve Ex. 33 if 2 particular people must not sit next to each other. 
35. Solve Ex. 33 if the 7 people are to be seated in a circle. 

13.4. COMBINATIONS 

We first lay down the following 

Definition. Each of the different groups which can be formed by 
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taking all or part of a number of things, without reference to the order of 
the things in each group, is called a combination. 

It should be noted that, in contradistinction toa permutation, the order of 
the constituents of a combination has no significance. Thus, while ab and 
ba are two distinct permutations, they represent one and only one combina- 
tion, namely, the group consisting of the two letters a and b. 

As in the case of the permutation, we have an appropriate symbol to 
represent the number of combinations of n different things taken r at a time. 
This symbol is C(v, r); it is, of course, a function of n and r. Its value is 

given by 

Theorem 5. The number of combinations of n different things taken r at a 
time is given by the formula 

(1) Ce 
r! 

PROOF. From each combination of r different things, we may form 7! 
permutations (Corollary, Theorem 2, Sec. 13.3). Hence, from all of the 

combinations, we may form a total of C(n, r)-r! permutations which is 
equal to P(n, r), the number of permutations of n different things taken r at 

a time. Hence 

Gn, r)< r= PH, 1); 

POT) 
> whence C(n, r) = 2 

r! 

which, from Theorem 2 (Sec. 13.3), may be written in the form 

n(n — 1)(n — 2):-:-(n—rt+1) 

r! 
Citar) — 

and relation (1) is established. 

It is worth noting in this last relation that numerator and denominator 

each has r factors. 

Corollary 1. The number of combinations of n different things taken all 

at a time is unity, that is, C(n,n) = 1. 

We will now obtain another form of relation (1) which is often more 

convenient. Thus, multiplying numerator and denominator of the right 

member of (1) by (n — r)!, we have 

Wil) is Ole shee) Sar) = n! 
C(n, r) = r!(n —r)! ri(n—r)! 
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Because of its importance, we state this result as 

Corollary 2. The number of combinations of n different things taken r 

at a time is also given by the formula 

n! 
7) Chr) =, fans 
@) a8, r!(n—7r)! 

Another important result may be obtained if we replace r by n — r in 

relation (2). Thus, 
! 

C(n,n—r)= —— . 
(n—r)!r! 

whence, from relation (2) we have 

(3) C(n, r) = Clin, nm — 7), 

which we state as 

Corollary 3. The number of combinations of n different things taken r at 
a time is equal to the number of combinations of n different things taken 

n—rat atime. 

Note. The result of Corollary 3 could be anticipated because for each combina- 
tion of r things selected from n different things, a corresponding group or 
combination of — r things is left. Such combinations are called complementary. 

For example, if we select a committee of 3 from 9 persons, a correspond- 
ing (complementary) group of 6 persons is left. 

Example 1. From 10 different consonants and 4 different vowels, how 

many words (not necessarily pronounceable) can be formed, each con- 
taining 6 consonants and 2 vowels? 

SOLUTION. We first select 6 consonants from 10 consonants in C(10, 6) 

ways. By relation (2), we have 

G0, ese LOSI oe ae ~ = 210. 
614! 1-2-3-4 

Similarly, we may select 2 vowels from 4 vowels in 

Then for each of the 210 ways of selecting the consonants, we have 6 
ways of selecting the vowels. Hence, by the fundamental theorem 
(Theorem 1, Sec. 13.2), the eight letters of each word can be selected in 
210 x 6 = 1260 ways. After each such selection, the eight letters may be 
permuted in 8! different ways. Hence the total number of words that can 
be formed is 1260 x 8! = 50,803,200. 
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Example 2. From a group of 7 seniors and 6 juniors, a committee of 5 
is to be chosen. Find the number of such committees containing (a) 
exactly 3 seniors; (b) at least 3 seniors. 

SOLUTION. (a) In this case, there must be exactly 2 juniors. The seniors 
d 7! 

may be selected in C(7, 3) = —— = 35 ways and the juniors in C(6, 2) = 6! 314! 
sai 15 ways. Hence, by the fundamental theorem, the total number of 

committees of 5 is 35. - 15 = 525. 

(b) Here we have three types of committees: (1) three seniors and 2 

juniors; (2) four seniors and | junior; (3) five seniors. The number of 

committees for each of the three types is then 

(1) 525 committees by part (a). 

7! 2) C(7, 4) C6, ) = 76 = 210. 

gt 

(3) C7, 5) ==> = 21. 

Hence, adding, the total number of committees is 525 + 210 + 21 = 756. 

Example 3. Twelve points are coplanar but no three of them are 
collinear. (a) Find the number of different triangles which may be formed 
by using these points as vertices. (b) Find how many of these triangles have 

a particular point as a vertex. 

SOLUTION. (a) Since each triangle has three vertices, we may form as 

many triangles as the number of ways in which we can select 3 points from 
12! 

12 points. This number is C(12, 3) = = 220: 

(b) For a particular point to be a vertex of each triangle, we set that 

point aside and then select the other 2 points from the remaining 11 points 

11! ; 
in C(11, 2) = aol 55 different ways. Hence there are 55 triangles, each 

having a particular point as a vertex. 

EXERCISES. GROUP 49 

Establish Corollary 1 of Theorem 5 (Sec. 13.4). 

_ Show that C@, 2) = C(m,.0), = 1. 

. Evaluate (a) C(8, 4); (b) C(7, 2). 

. Evaluate (a) C(10, 8); (b) C(18, 3). 

, i Ela, By S Be, alin ie Galt (.3 a3) sn ne 
nA fb ww 
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9, (he NEG, 2) = SCE, 3), serve i. 8. If Cin, 5) =2CH, 2), ind7. 

Omir @(6en)a—s5 Cnr) minder: 

10. If P(n, r) = 120 and C(n, r) = 20, find n and r. 

11. Show that C(7, 3) = C(6, 3) + C(6, 2). 

12. Show that C(8, 5) — C(7, 5) = C(7, 4). 

13. Find the number of committees of 4 which can be selected from a group of 

15 persons. 

14. In Ex. 13, find the number of committees which include a particular person. 

15. In Ex. 13, find the number of committees which do not include a particular 

person. 

16. Twelve points are coplanar but no 3 of them are collinear. -Find the 

number of straight lines which can be drawn through these points. 

17. In Ex. 16, find the number of lines which contain a particular point. 

18. Find the number of diagonals of a convex polygon of 8 sides. 

19. Find the number of ‘“‘words,” each containing 2 consonants and 2 vowels, 

which can be formed from 5 consonants and 3 vowels. 

20. Solve Ex. 19 if consonants and vowels are to alternate. 

21. There are 12 different books on a shelf. (a) Find the number of different 

selections of 8 books which may be made. (b) Determine the number of these 
selections which include a particular book. (c) Determine the number of 

these selections which include 2 particular books. 

22. There are 15 points in space and no 4 of them are coplanar. (a) Find the 

number of planes determined by these points. (b) Determine the number of these 

planes containing one particular point. (c) Determine the number of these planes 

containing two particular points. 

23. Find the number of committees, each consisting of 4 sophomores and 2 

freshmen, which can be selected from 8 sophomores and 10 freshmen. 

24. From a group of 6 men and 9 women, a committee of 5 is to be chosen. 

Find the number of such committees containing at least 2 women. 

25. Solve Ex. 24 if the committees are to contain no more than 2 women. 

26. A bag contains 3 white balls and 5 black balls. In how many ways may we 
select 3 balls so that: (a) exactly 2 are white; (b) at least 2 are white; (c) not 

more than 2 are white? 

27. A bag contains 4 white, 2 black, and 3 red balls. In how many ways may 

we select 5 balls so that 2 are white, 1 is black, and 2 are red? 

28. Solve Ex. 27 so that at least 3 balls are white in each selection of 5 balls. 

29. In how many ways may a committee of 6 men be chosen from a group of 
12 men if two particular men cannot serve on the same committee ? 

30. A company of 25 soldiers provides a guard of 3 men each night. Determine 
(a) the number of nights a different guard may be formed and (b) the number of 
nights each man will serve. 
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13.5. DIVISION INTO GROUPS 

By Corollary 3 of Theorem 5 (Sec. 13.4), the number of combinations of 
n different things taken r at a time is equal to the number of combinations 
of n different things taken n — r at a time. We then noted that for each 
combination containing r things, there is a complementary combination 
containing m — r things. That is, the number of ways in which n different 
things may be divided into two groups, one containing r things and the 
other n — r things, is given by relation (2) of Sec. 13.4: 

n! 
(1) C(n, r) => ite 29) 5 

We now extend this division to any number of groups. For convenience, 

let us start by considering the division of p + q different things into two 
groups, one of p things and the other of g things, where p ~ g. By relation 
(1), the number of distinct ways, Nz, in which this can be done is 

(2) nN, = PED! 
ape 

Next we consider the division of p +g +r different things into three 
groups of p,q, and r things, respectively, where p, q, and r are unequal 

positive integers. First we divide p + q + r things into two groups, one 
of p things and the other of g + r things; by relation (1), this can be done 

ieratn! 
pig yr)! 

be divided into two groups, one of g things and the other of r things, in 

(gir)! 

gir! 

total number of distinct ways of forming the three groups is 

Det Ag) AD rg er)! | 
pia +r)! qir! piq!r! 

distinct ways. Similarly, each group of g + r things can 

distinct ways. Then, by the fundamental theorem (Sec. 13.2), the 

(3) N3 

In the same way, the results given by relations (2) and (3) may be extended 

to any number of groups. We state the general result as 

Theorem 6. Let p,q,r,+**,t represent m unequal positive integers. 

Then the number of distinct ways of dividing p ++ q +r + °°: + t different 

things into m groups of p,q,1,***,t things, respectively, is 

(Peden gett)! 
Nm piqir!---t! 
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Example 1. Find the number of ways 15 different books may be divided 

into three groups of 9, 4, and 2 books, respectively. 

SOLUTION. By Theorem 6, the number of ways is 

! 
alpine’ TOTS. 
9! 4! 2! 

Thus far we have considered only division into unequal groups. If the 
division is to be into equal groups, we must make a certain modification in 

Theorem 6. Say, for example, that we wish to divide 4 different things into 
two equal groups, each containing 2 things. If we use Theorem 6, the 

4! - 
number of ways is Se 6 where, however, the two groups are permuted 

among themselves in 2! ways. We may exhibit this case by dividing 4 cards 
marked 1, 2, 3, 4into two groups of 2 cards each. Thus, we have 

Group | Group 2 

12 3, 4 (1) 

13 2,4 (2) 

1,4 23 (3) 

Py 8s 1,4 (3) 

2,4 th, (2) 

3,4 12 (1) 

Note here that identical groups, but different in order, are designated by the 
same number at the right. Hence, if we consider the order of the groups, 

our result follows at once from Theorem 6; if however, the order of the 

groups is disregarded, we must divide the result of Theorem 6 by 2!, that is, 
the number of ways is 6/2! = 3. 

The preceding argument may be used for the general case of division into 
any number of equal groups. From Theorem 6,ifweletp = gq =r=--- = 
t = n, we obtain the number of ways of dividing mn different things into m 
groups of n things each, the order of the groups being regarded. If the 
order of these groups is disregarded, the last result must be divided by m! 
We record these results as 

Theorem 7. The number of ways in which mn different things can be 
divided into m groups of n things each, where the order of the things in any 
group is not to be considered, is 

(mn)! 

(n!y™’ if the order of the groups is regarded; 

mn)! 
Aor , if the order of the groups is disregarded. 
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The distinction noted in Theorem 7 is illustrated in 

Example 2. A deck of playing cards consists of 52 different cards. 
Find (a) the number of ways four hands of 13 cards each may be dealt to 
four players in a game of bridge; (b) the number of ways the 52 cards may 
be divided into four groups of 13 cards each. 

SOLUTION. (a) In a bridge game each different distribution of the hands 
among the players constitutes a different division. Hence, in this case, the 
groups are permuted, and by the first part of Theorem 7, the number of 

SOG (3 

(b) In this case, the order of the groups is immaterial, and, by the second 
52! 

part of Theorem 7, the number of ways is (34 

13.6. NOTATION FOR SUMMATION 

For the purposes of the next section it is convenient at this time to 
introduce a notation whereby it is possible to represent the sum of a 
sequence of terms in a very compact form. Thus, a sum of m terms such 

n 

as u, + u. +--+ + u, may be represented by the notation > u;, where the 
i=1 

symbol = is the capital Greek letter sigma and is called the sign of summa- 
tion, while the letter i, called the index of summation, takes on 2 Pe 

all positive integral values from 1 to n TIONG. The symbol > u,; is read 
“the summation of u, from i = 1 toi =n.’ 3 
Thus, in accordance with the notation for summation, we may write the 

sum of the terms of an arithmetic progression (Sec. 10.2) in the form 

S [ay + (k — 1d] = ay + (a + a) + + 20) + - 
; + (a, + [n — 1]d), 

where each term in the right member is obtained by substituting 1, 2, 3, 

n successively for k in the expression a, + (k — 1)d. Note that the letter 

used for the index has no effect on the sum. 

Similarly, a polynomial of degree n may be represented by this notation 

in the form 

Osa, 62 1 ae a8. 
oO 
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13.7. BINOMIAL COEFFICIENTS 

In Sec. 7.6, relation (2), it was shown that the (r+ 1)th term of the 

binomial expansion of (a + b)” is given by 

nit} si ree 

r! 

LOA 
(1) (r + 1)th term = 

But by Theorem 5 (Sec. 13.4), 

n(n — 1)(n — 2)---(n—r+1) 
C(n, r) = ay [ae 

so that (1) may be written in the form 

(2) (r -— I)th term —= Ciera? "5". 

Hence, using the & notation of Sec. 13.6, we have 

Theorem 8. The entire binomial expansion may be written in the form 

(3) (G+ b)2 = > Cin, ra 7b", 
r=0 

The student may readily verify Theorem 8 by expanding the terms as 
given by the right member of (3), remembering that C(n, 0) = C(n, n) = 1 
and that 0! = 1 (Sec. 7.4). By evaluating the binomial coefficients, we 
obtain precisely the binomial theorem as given by relation (3) in Sec. 7.4. 

In relation (3) above, let a = b = 1 and expand the right member. We 
obtain 

(1 + 1)" = C@, 0) + Ci, 1) + Cm, 2) +--+ + Cin, n). 

Transposing C(n, 0) = 1, we have 

(4) C(n, 1) + C(n, 2) + +++ + C(n,n) = 2” — 1. 

We state relation (4) as 

Theorem 9. The total number of combinations of n different things taken 

Ve 2s ont Gt O pines CQUGLIO 2 als 

Example 1. Determine how many different sums of money can be made 

from a cent, a nickel, a dime, a quarter, a half dollar, and a dollar. (A 

single coin may be considered a ‘‘sum.”’) 

SOLUTION. Here we have 6 different pieces of money. Hence, by taking 
them 1, 2, 3,---, 6 ata time, the total number of different sums of money 

we can form is 2° — | = 63, in accordance with Theorem 9. 
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Once again, let a = b = 1 in relation (3) so that the right member will 
contain only the sum of the binomial coefficients, which we now write in 
the form: 

(5) C(n, 0) + C(n, 1) + C(n, 2) + +>: 

+ C(n,n — 2) + Ctn,n — 1) + C(n, n). 

By Corollary 3 of Theorem 5 (Sec. 13.4), C(n, r) = C(n,n — r). Hence, 

for the binomial coefficients in (5), we have C(n, 0) = C(n, n), C(n, 1) = 

Cnn — 1), Cin, 2) = Cnn — 2),*-=, and’so forth. In other words, 

we have here precisely the type of symmetry we noted as the fifth character- 
istic of the binomial expansion in Sec. 7.4. We record this result as 

Theorem 10. Jn the expansion of (a + 6)”, the binomial coefficients of 

any two terms equidistant from the ends of the expansion are equal. 

Because of the importance of the binomial coefficients, extensive tables 

of their values have been set up. In the construction of such tables, advan- 

tage is naturally taken of the symmetry noted in Theorem 10. In addition, 
use is made of the principle underlying the formation of Pascal’s triangle, 
which was discussed in Sec. 7.5. This principle will now be proved as stated 

in 

Theorem 11. (Principle of Pascal’s Triangle). In the binomial expansion 

of (a + b)”, the coefficient of the (r + 1)th term is equal to the sum of the 

coefficients of the rth and (r + 1)th terms in the binomial expansion of 
(a ab bye. 

PROOF. In order to establish this theorem, we must show, in accordance 

with relation (2), that 

Corr) =Cn —1in— ACh — Lyn). 

Thus, by Corollary 2 of Theorem 5 (Sec. 13.4), we have 

Cin —1,r—1)+ Cn —1,7r) 

- (n — 1)! (n — 1)! 

Treinen! rraS=r— D! 

r(n — 1)! " CSP) NGS ais ie = 1k 

r!(n—r)! r!(n— 1)! r!(n—1r)! 

a) ee yy, 
nin) rn 7)! 

This completes the proof. 

Example 2. By means of Theorem 11, find the binomial coefficients in 

the expansion of (a + 5)° from the binomial coefficients in the expansion of 

(a + b)’. 
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SOLUTION. Expanding (a + b)® by means of Theorem 8, we readily find 

its binomial coefficients to be, in order, 

Se LOO Ros. 

The first and last binomial coefficients in the expansion of (a + 6)", 

n a positive integer, are each unity. Then by Theorem 11, the binomial 

coefficients of (a + 5)®, from the second on, are 

2nd coefficient = 1 + 5 = 6, 

3rd coefficient = 5 + 10 = 15, 

4th coefficient = 10 + 10 = 20, 

5th coefficient = 10 + 5 = 15, 

6th coefficient = 5+ 1 = 6. 

The last (7th coefficient) is, of course, unity. Also, due to the symmetry of 

the coefficients, it is only necessary to compute through the fourth co- 
efficient. 

In the various expansions of (a + 5)", we observe that the binomial 

coefficients increase up to the middle of the expansion and then decrease in 
reverse order. From this we may infer that ifm is even, with an odd number 
of terms in the expansion, the middle term has the greatest coefficient; and 

if is odd, with an even number of terms in the expansion, the two middle 

terms each have the greatest coefficient. That this inference is correct 
follows from 

Theorem 12. The maximum value of C(n, r) is obtained when r = n/2 if 

n is even, and when either r = (n — 1)/2 or r = (n + 1)/2 ifn is odd. 

PROOF. By Theorem 8, C(n, r) is the coefficient of the (r + 1)th term in 

the expansion of (a + b)”. Hence, C(n, r — 1) is the coefficient of the rth 

term, and we have the ratio: 

COLT) == n!} er) eee lL) eg eed 

Cin,r—1) ri (n—7r)! n! r 

Now the coefficient C(n, r) is greater than its immediate predecessor 

C(n, r — 1) as long as their ratio is greater than unity, that is, as long as 

n— 7+] ve Nei 
r 

whence n —r-+1>randr< "FF 

1, 

If is even, r = n/2 is the greatest integer less than (n + 1)/2 = n/2 + 
2, 
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If'n is odd, n — 1 is even, and r = (n — 1)/2 is the greatest integer less 
than (n — 1)/2 +1=(n + 1)/2. But ifn is odd, we may also have r = 

: n+ 1 n—1 
(n + 1)/2 since cn, 5 = cn, by Corollary 3 of Theorem 5 
(Sec. 13.4). 2 

This completes the proof. 

EXERCISES. GROUP 50 

1. Establish Theorem 6 (Sec. 13.5) by the method of proof used for Theorem 3 
(GSeCa 325): 

2. Establish Theorem 7 (Sec. 13.5). 

3. Consider the case of 6 cards, marked from | to 6, arranged into 2 hands of 

3 cards each. Test Theorem 7 (Sec. 13.5) by exhibiting the actual arrangements of 
these hands. 

4. Find the number of ways of dividing 9 different things into groups of 5 and 
4 things. Compare this result with the number of ways of dividing 10 different 

things into 2 equal groups. 

5. Show that the number of ways of dividing 2n — 1 different things into 

groups of m and m — | things is equal to the number of ways of dividing 2n 

different things into 2 equal groups. Verify this result in Ex. 4. 

6. Find the number of ways 12 different articles may be divided into 3 groups 
of 5, 4, and 3 articles, respectively. 

7. Find the number of ways of dividing 12 different articles into 3 equal 

groups. 

8. Find the number of ways of dividing 12 different articles equally among 3 

people. 

In each of Exs. 9-12, write out the terms of the sum indicated by the given 

summation. 

n n 4 n 

OMe sue: 10a az 17> Gn = 1). eet) 
ET 4=1 n=1 k=1 

13. Show that the sum of a geometric progression of n terms whose first term 
n 

is a, and whose common ratio is r may be represented by }) qr*. 
i=1 

14. In how many different ways may a woman invite one or more of 5 friends 

to luncheon? 

15. Find the number of different weights which may be weighed on a balance 

scale by using standard weights of + Ib, $ 1b, 1 lb, and 2 lb on one arm. 

16. Froma group of 8 men, find the number of different committees which may 

be formed containing (a) one or more men; (b) two or more men. 

17. Without actually expanding, find the sum of all the coefficients in the 

expansion of (a) (a + b)!; (b) Ba — b)*. 
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18. Without actually expanding, find the sum of all the coefficients in the 

expansion of (a — 2y + 32)*. 

19. A coin is tossed 6 times. Find the number of different ways of obtaining 

(a) exactly 3 heads; (b) at least 3 heads; (c) at least 1 head. 

20. Eight coins are tossed at one time. Find the number of different ways of 
obtaining (a) exactly 7 tails; (b) at least 7 heads; (c) at least 1 tail. 

21. Without actually expanding, find the maximum coefficient in the expansion 
of (a + 6). 

22. Without actually expanding, find the maximum coefficients in the ex- 
pansion of (a + 5). 

23. Show that the sum of the coefficients of the odd terms of_a binomial 
expansion is equal to the sum of the coefficients of the even terms. 

24. For the binomial expansion (a + 5)", show that the coefficient of the 

middle term is even if 7 is even. 

25. Show that C(m, 1) + 2C(n, 2) + 3C(n, 3) +--°° +nC(n,n) = 12". 

26. Verify Ex. 25 for n = 4. 

27. Show that the general term in the expansion of (a+ b+c)” is 

where p +g +r =n. 

28. Using the result of Ex. 27, find the coefficient of ab?c* in the expansion 

of (a+b +c). 

29. Show that the number of ways in which the sum 7 can be obtained by 
throwing 2 six-faced dice is equal to the coefficient of x7 in the expansion of 

(ce +a? +43 + a4 +25 + 26)?, 

30. Using the method of Ex. 29, find the number of ways in which each of the 

sums from 2 to 12 inclusive can be obtained by throwing 2 six-faced dice. Check 

your results by showing that their sum is equal to 36. 

! 
Pheer rp Ores 

piqir! 
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IP robability 

14.1. INTRODUCTION 

In this chapter we will give an elementary introduction to the theory of 
probability. The subject is so extensive in its applications and has 

.assumed such great importance that entire treatises are devoted ex- 
clusively to it. 

The mathematical theory of probability was founded about three 
centuries ago and was then concerned solely with games of chance. Since 

that time probability has been applied to a wide range of fields, several of 
which are mentioned here in order to give the student some idea of the 
importance of the subject. 

One of the earliest applications of probability was in actuarial science, 

which considers life insurance and pension funds and their related problems. 
Another important use of probability is in statistics, which enters into a 

wide range of fields, such as finance, economics, biology, psychology, 

and the social sciences in general. Probability is also used in modern 
physics and chemistry. We note, finally, that probability has many uses in 
engineering, such as in the theory of least squares and the adjustment of 
observations, in problems of congestion (traffic problems), in the theory of 

sampling, and in the quality control of manufactured products. 
Within the limits of this chapter we cannot, of course, discuss any of the 

above applications. But we shall consider some of the basic concepts of 
probability and a number of simple examples. Later, when the student has 
had further mathematical training, particularly in the calculus, he will be 

able to make a detailed study of one or more of the fascinating applications 

of probability. 
295 
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14.2. DEFINITIONS 

We are all familiar with the words “probability’’ and “chance” as used 
in everyday speech. Thus we say that it will probably snow tonight or that 
a certain plane will probably be late arriving at a designated air field. We 
note that both of these statements are predictions of the future and, as such, 

are short of certainty. They are also vague in the sense that they do not 
give any measure of the probability of the occurrence of either event. For 
our purposes in mathematics it will be necessary to frame a definition which 
will enable us to determine a numerical value or measure of the probability 
of the occurrence or nonoccurrence of a particular event. There are two 
definitions of probability in common use; we shall consider each of them 
in turn. 
We know (Sec. 13.2) that if a cubical die is thrown, it can appear in any 

one of 6 different ways, each equally likely. The number 5 is one of these 
6 different ways, and we then say there is 1 chance out of 6 that a 5 will 
appear. We also say that the probability of obtaining a 5 on one throw of a 
cubical die is $. Also, if we toss a coin, it can fall in either of 2 equally 

likely ways, a head or a tail, and by a similar argument, the probability of a 
head from one toss of a coin is said to be 3. Note the term “equally 

likely’ in both of these examples. It means, in the case of the die, that any 
one number is as likely to appear as another; in the case of the coin, the 
head is just as likely to appear as the tail. It is on the basis of such reason- 
ing that we frame our first definition, which we record as 

Definition 1. If an event can happen in a ways and fail in b ways, then 
the total number of all possible ways in which it can happen and fail is 
a+b. If each of these a + b ways is equally likely to occur, then the 
probability p that the event will happen is defined as the ratio 

(1) ae 
i a +0 

and the probability ¢ that the event will fail is defined as the ratio 

b 
(2) = 

: a+b 

In other words, the probability of the success of an event is defined as 
the ratio of the number of favorable cases to the total number of cases 
involved, each of these cases being considered equally likely to occur. 
Analogously, the probability of the failure of an event is defined as the 
ratio of the number of unfavorable cases to the total number of cases 
involved, each of these cases being considered equally likely to occur. 
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Thus, in the example above for the probability of a 5 appearing on one 
throw of a die, we have a = 1, b = 5, so that from (1) and (2) it follows 
that the probability of success is p = 1/(1 + 5) = 1/6 and the probability 
of failure is gq = 5/(1 + 5) = 5/6. 

Definition | is sometimes called the classical definition of probability. 
Since we know beforehand or assume that we know beforehand the number 
of favorable and unfavorable cases, Definition 1 is also said to be the 
definition of a priori probability. 

From Definition 1 we may obtain a quantitative measure of probability. 
Of all the possible ways in which an event can happen and fail in one trial, 
it must either happen or fail once. This is defined as certainty and is 
readily found to be unity. Thus, by adding p and q as given by (1) and (2), 
we have 

b 
(3) eo ain 

atb a+b 

From (3), we obtain the following facts: 

If the probability that an event will happen is p, then the probability that 
it will fail is 1 — p. Thus, from (3), 

(4) g=1-p. 

If the probability that an event will fail is g, then the probability that it 
will happen is 1 — qg. Thus, from (3), 

(5) = og: 
If an event is certain to happen, the probability that it will happen is 1, 

and the probability that it will failis zero. Thus in (4), when p = 1,q = 0. 

If an event is certain to fail, the probability that it will fail is 1, and the 
probability that it will happen is zero. Thus in (5), when g = 1, p = 0. 

It is evident, therefore, that all values of probability lie between 0 and 1, 

and we write 
Ospal, Vagal, pt+g=1. 

We now give several more definitions. As before, let a and 6 represent, 

respectively, the number of favorable and unfavorable cases for the occur- 

rence of a particular event. Ifa > b, we say that the odds are a to b in favor 

of the event; if a <b, we say that the odds are b to a against the event, 

and if a = b, we say that the chances are even. 

Thus, on one throw of a die there are four ways of obtaining 3 or more; 

hence the odds in favor of obtaining 3 or more are 4to2 or2 to 1. Similarly, 

the odds are 5 to | against obtaining 6 on one throw of a die. 

Let us now return to Definition 1. If the values of a and d are unknown, 

the definition cannot be used. This occurs in certain cases. For example, 
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say that a company is about to manufacture an order of 2000 articles and 

desires to know how many may turn out defective. If we have no informa- 

tion about any previous experience with this operation, we cannot predict 

the number of defectives with any degree of confidence. However, say 

that by keeping accurate records in the previous manufacture of 100,000 of 

these same articles under the same essential conditions, it was observed that 

1000 articles turned out defective. We then say that in any future operation 

of manufacturing these same articles under the same essential conditions, 

the probability of obtaining a defective in any one trial is equal to 

1000 

100,000 
manufactured to be defective. Hence, for an order of 2000 articles we may 
expect 2000 x 0.01 = 20 defectives. The reasoning in this example is the 

motivation for 

= 0.01. That is, we may expect one out of every 100 articles 

Definition 2. Consider an event which can either happen or fail in one 
trial. If it is observed that this event happens m times out of a total of 
trials under the same essential conditions, then the ratio m/n is defined as 

the probability p that the event happens in any one trial, and we write 

m 

(6) a 
n 

We note that the term “‘same essential conditions” occurs in this defini- 
tion and also in the preceding example. It means that each trial occurs (as 
nearly as possible) under precisely the same conditions. Thus, in the 

example of manufacturing certain articles, it means that the operation is 
performed by the same people using the same machines and equipment, all 
other conditions also being the same. It is, of course, questionable whether 
this can be realized in actual practice. 

In Definition 2, called the frequency definition, the probability is really an 
estimate, and confidence in this estimate increases as n, the number of 

trials or observations, increases. For this reason, if the ratio m/n 

approaches a limit as n increases indefinitely (Sec. 10.5), this limit is also 
defined as the probability of the event happening in any one trial. We say 
that this is the result obtained in the long run or on the average. 

Since probability, as given by Definition 2, is obtained from a large 
number of experiments or observations, it is often called empirical or 
statistical probability. Furthermore, in contradistinction to Definition 1, 
it is also called a posteriori probability. 

From relation (6) we have m = np. Hence, if p is the probability of the 
occurrence of an event in a single trial, we say that the frequency or 
expected number of occurrences in n trials is equal to np. Thus, if the 



Sec. 3 Simple Events 299 

probability of a head in one toss of a coin is 3, then in 100 tosses we may 
expect 100 - } = 50 heads. If np is not an integer, we take the integer closest 
to it in value. 

The value of a given chance of winning a sum of money is called the 
expectation. If p is the probability that a person will win a sum of money s, 
his expectation is defined as ps. Thus in a lottery of 10 tickets for a single 
prize of $50, the probability that one ticket will win the prize is 4, and the 
expectation for one ticket is therefore ;, - $50 or $5. 

14.3. SIMPLE EVENTS 

In this section we will consider some of the simplest types of problems 
in probability. Such types are associated with what are appropriately 
called simple events and for which we have the following 

Definition. A simple event is a single event whose occurrence or non- 

occurrence is not involved with any other event. 

Thus, a simple event is that of obtaining an ace with one throw of a 
six-faced die. 

NoTE. Many problems in probability are concerned with coins, dice, and cards. 

Although the student is probably familiar with these terms, we will now describe 
them briefly in order that it may be clearly understood how they are used in the 
problems. 

A coin has two distinct faces, one designated as a head and the other as a tail. 

The toss of a coin must always result in either a head or a tail appearing upper- 

most, each being equally likely. 

A die (plural dice) is a small cube on each of whose six faces one or more dots 

appear, the number of dots designating the integers from 1 to 6 inclusive. When 

thrown, a die must always come to rest with one and only one face on top, each 

of the six faces being equally likely to appear. The number one is also called an 

ace, and the number two a deuce. 

An ordinary deck of playing cards consists of 52 cards divided into 4 suits of 
13 cards each. The names of the suits and their colors in parentheses are as 

follows: clubs (black), diamonds (red), hearts (red), and spades (black). Each 

suit consists of 9 cards numbered from 2 to 10 inclusive and 4 cards designated as 

ace, king, queen, and jack (in the order of descending value). The statement that 

a card is drawn ‘“‘at random” means that the card is taken from a thoroughly 

shuffled deck so that any card is as likely to be chosen as another. 

We now exhibit several typical examples. 

Example 1. A coin is tossed 10 times. Find the probability that 

exactly 7 heads appear. 
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SOLUTION. Since a coin can appear in 2 different ways in one toss, in 

10 tosses it can appear in 2!° ways (Cor. 2, Theorem 1, Sec. 13.2). From 10 

heads, 7 heads may be selected in C(10, 7) = 120 different ways (Theorem 

5, Sec. 13.4). Hence, by Definition 1 (Sec. 14.2), the required probability is 

120: 3at5 
chomp 

Example 2. Find the probability of obtaining a sum of at least 10 on 

one throw of 2 dice, and determine the odds in favor of or against this event. 

SOLUTION. One die can appear in 6 different ways; hence 2 dice can 
appear in 6 - 6 = 36 different ways. The sum 10 can be obtained in 3 ways: 
5+5,6+4,4+4+ 6; the sum 11 in2 ways: 6+ 5,5 +6; and the sum 

12in 1 way. Hence the total number of favorable ways is 3 + 2 + 1 = 6, 
and by Definition 1, the required probability is p = 3% = ¢. 

In this case a = 6 and a + b = 36; hence b = 30. Since a < b, the 

odds are 30 to 6 or 5 to | against this event. 

Example 3. If 3 cards are drawn at random from a deck of 52 cards, 

find the probability that they are ace, king, and queen. 

SOLUTION. From 52 cards, 3 may be selected in C(52, 3) different ways 
(Sec. 13.4). Since there are 4 suits and each suit has an ace, king, and queen, 

these 3 cards may be obtained in 4-4-4 different ways (Sec. 13.2). 
Hence, by Definition 1, the required probability is 

= 4 AA ech Ga ae ni ee LO 

C5253 igen 26 1 0 eee 

Example 4. From a bag containing 4 white, 2 black, and 3 red balls, 5 

balls are drawn at random. Find the probability that 2 are white, 1 is 
black, and 2 are red. 

SOLUTION. From a total of 4 + 2 + 3 = 9 balls, 5 balls may be selected 
in C(9, 5) different ways (Sec. 13.4). Now 2 white balls may be selected 

from 4 white balls in C(4, 2) ways, 1 black ball from 2 black balls in C(2, 1) 

ways, and 2 red balls from 3 red balls in C(3, 2) ways. Hence the total 
number of favorable ways is C(4, 2) - C(2, 1) - C(3, 2) and, by Definition 1, 

the required probability is 

Bee ERO LC (O52). kOe ro meee 

P 

C(9, 5) 126 ap 

We next consider an example using Definition 2 of probability (Sec. 14.2). 
In computing their rates, insurance companies use a comprehensive table 
of observations known as a mortality table. Such a table gives a complete 
mortality record of a large number of persons, starting at an early age. 
For each year thereafter, the table shows the number of these persons still 
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living. Thus, a table shows that of 1,000,000 persons living at 1 year of age, 
941,806 persons are living at age 24 and that 906,554 persons are living at 
age 35. We then say, in accordance with Definition 2, that the probability 

906,554 

1,000,000 
the probability of a person aged 24 living to be 35 is 

of a person | year old living to be 35 is or about 0.91, and that 
906,554 

941,806 

Example 5. A mortality table shows that of 949,171 persons living at 
age 21, there are 577,882 living at age 65. (a) Find the probability that a 
man now 21 years of age will live to retire at 65. (b) Of a group of 2000 
men now aged 21, find how many may be expected to retire at 65. 

SOLUTION. (a) By Definition 2, the probability of attaining age 65 is 

=o 0.609 (about) pee o4o it j 
(b) For n = 2000 and p = 0.609, the expected number of occurrences 

(Sec. 14.2) = np = 2000(0.609) = 1218, and this is the number of men who 

may be expected to retire at 65. 

or about 0.96. 

EXERCISES. GROUP 51 

In the following exercises, p and q represent, respectively, the probability of 
the success and the probability of the failure of an event. 

1. If the odds are in favor of an event happening, show thatp > 4. Ifthe odds 
are against an event happening, show that p < 3. If the chances of an event 

happening are even, show that p = q = 3. 

2. Show that the ratio of the odds in favor of an event happening is equal to 

pig and that the ratio of the odds against an event happening is equal to g/p. 

3. The probability that an event will happen is 3. Find the odds in favor of 

the event. 

4, The probability that an event will fail is ,*,. Find the odds against the 

event. 

5. The odds are 7 to 3 in favor of an event. Find the probability that the 

event will fail. 

6. The odds are 5 to 4 against an event. Find the probability that the event 

will happen. 

7. Find the probability of obtaining a sum of 7 on one throw of 2 dice, and 

determine the odds against this event. 

8. Find the probability of obtaining a sum of 7 or less on one throw of 2 dice, 

and determine the odds in favor of this event. 

9. A coin is tossed 4 times. Find the probability that exactly 3 heads appear. 

10. For one toss of 4 coins find the probability that (a) exactly 3 heads appear; 

(b) at least 3 heads appear. 
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11. One card is drawn at random from a deck of 52 cards. Find the probability 

that (a) it is a club; (b) it is either a diamond or a heart; (c) it is not a spade. 

12. If 4 cards are drawn at random froma deck of 52 cards, find the probability 

that they are ace, king, queen, and jack. 

13. From a bag containing 7 white and 5 black balls, 6 balls are drawn at 
random. Find the probability that 4 are white and 2 are black. 

14. In Ex. 13, find the probability that of the 6 balls drawn, at least 4 are white. 

15. Froma group of 8 boys and 6 girls, a committee of 4 is to be chosen by lot. 
Find the probability that it will consist of 2 boys and 2 girls. 

16. In Ex. 15, find the probability that the committee will have no more than 

2 boys. = 

17. A mortality table shows that of 557,882 persons living at age 65, the num- 

ber living at age 80 is 181,765. Of 1000 men retiring at age 65, find how many are 
expected to be alive 15 years later. 

18. A person is to receive a prize of $90 if he obtains a sum of 9 or more on one 

throw of 2 dice. Find the value of his expectation. 

19. A person is to receive a prize of $51 if he obtains a spade and a diamond 
when drawing 2 cards at random from a deck of 52 cards. Find the value of 

his expectation. 

20. A man with 2 dimes and 2 nickels in his pocket draws out 2 coins at random 

to pay a 15-cent bus fare. Find the probability that he draws out the exact fare. 

21. Nine different books are arranged at random on a shelf. Find the prob- 

ability that 3 particular books are next to each other. 

22. Nine people are seated at random in a circle. Find the probability that 2 
particular people are next to each other. 

23. From a bag containing 6 white, 4 black, and 2 red balls, 6 balls are drawn 

at random. Find the probability that 3 are white, 2 are black, and 1 is red. 

24. From a bag containing 5 white balls, 3 black balls, and 1 red ball, 3 balls 

are drawn at random. Find the probability that no white ball is drawn. 

25. Find the probability of obtaining a sum of 15 on one throw of 3 dice. 

26. Find the probability of obtaining a sum of at least 15 on one throw of 3 
dice. 

27. On one throw of 3 dice, find the probability that the same number appears 

on any 2 but only 2 of the dice. 

28. Two cards are drawn at random froma pack of 10 cards numbered 1 to 10. 

Find the probability that the sum of the numbers on the drawn cards is (a) even; 
(b) odd. 

29. A man draws one card at random from a pack of 10 cards numbered from 
1 to 10, where the number on each card represents the same number of dollars as 
a prize. Find the value of his expectation. 

30. On one throw of a die, a man is to receive an amount in dollars equal to the 
number thrown. Find the value of his expectation. 
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31. A man draws 3 coins at random froma bag containing 8 dimes, 4 quarters, 
and 3 half-dollars. Find the value of his expectation. 

32. Acoin has been tossed 6 times and 6 successive heads have appeared. Find 
the probability of head on the next toss. 

33. If3 cards are drawn at random froma deck of 52 cards, find the probability 
that they are (a) all hearts; (b) all of the same suit. 

34. If3 cards are drawn at random froma deck of 52 cards, find the probability 

that 1 is a heart and 2 are diamonds. 

35. If 5 women and 4 men are seated at random in a row, find the probability 

that the women and men sit in alternate seats. 

36. If 4 women and their husbands are seated at random in a row of 8 chairs, 

find the probability that each woman is seated next to her husband. 

37. If 4 cards are drawn at random from a deck of 52 cards, find the probability 
that they include one from each suit. 

38. If 5 cards are drawn at random from a deck of 52 cards, find the probability 

that they include exactly 3 kings. 

39. If 5 cards are drawn at random from a deck of 52 cards, find the probability 
that they include exactly 3 of the same denomination. 

40. A yarborough is a bridge hand of 13 cards, none of which is higher than a 9. 

Show that the odds against holding a yarborough are 1827 to 1. 

14.4. COMPOUND EVENTS 

Here we will consider problems which, in general, are somewhat more 

difficult than those of the preceding section. This is due to the fact that we 
will now study the probability of compound events, that is, the occurrence 
of two or more simple events. Compound events may be classified into 
three types: independent events, dependent events, and mutually exclusive 

events. We will define and discuss each of these types in turn. 

Definition. Two or more events are said to be independent if the 

occurrence of any one of them does not affect the probability of the occur- 

rence of any of the other events. 

Thus, the compound event of obtaining both an ace on one throw of a 

die and a head from a single toss of a coin is composed of two independent 

events, for the occurrence of an ace on the die does not affect the probability 

of the appearance of a head on the coin and vice-versa. 

We will now establish an important fundamental theorem. 

Theorem 1. (Multiplication Theorem for Independent Events). If p, and 

Pz are the respective probabilities of the occurrence of two independent 
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events E, and E,, then P = p,pz is the probability that both E, and E, occur 

simultaneously or in turn. 

proor. As in Definition 1 (Sec. 14.2), let py = a,/(a, + 5), where a, is 

the number of ways E, can happen and by is the number of ways it can fail, 

all of these ways being equally likely. Similarly, let p, = a3/(a2 + 52), 

where a, is the number of ways E, can happen and b, is the number of 

ways it can fail. Then by Theorem 1 (Sec. 13.2), the total number of ways 

in which both E, and E, can happen is a,a,, and the total number of ways 
in which they can both happen and fail is (a, + b,)(a, + be). Then by 
Definition 1 (Sec. 14.2), the probability P that both E, and E, can happen 

simultaneously or in turn is : 

pee a1a9 = ay : a2 

(a, + by)(ay + bg) a, + bg a, + bg 
= PyP2.- 

This completes the proof. 

Corollary 1. Jf py, P2,°**,Pn are the respective probabilities of the 
occurrence of n independent events, then P = p,p2°** Py, is the probability 
that all of these events occur simultaneously or in turn. 

Corollary 2. If p is the probability that an event will happen in any 
single trial, then the probability that it will happen r times in succession, or 

in r specified trials, is p’. 

NoTES. 1. It should be observed that in both the statement and proof of 

Theorem 1 (appropriately called the Multiplication Theorem), the words both— 

and are used. Thus, we speak of the occurrence of both events E, and E,. These 

words are characteristic of problems in independent events. 

2. When we speak of independent events occurring in turn, we mean that they 

may occur in any order. 

Example 1. Find the probability of obtaining both a deuce on one 
throw of a die and a tail from a single toss of a coin. 

SOLUTION. The probability of a deuce is $; the probability of a tail is 4. 
Since these are independent events, it follows from Theorem 1 that the 
probability of obtaining both a deuce and a tail is }-4 = j4. 

Example 2. The probabilities that 4 and B can solve a particular 
problem are 3 and j, respectively. Find the probability that the problem 
will be solved if both try it. 

SOLUTION. There are several ways of working out this example. We will 
use a short and simple method. 

The problem will be solved if both A and B do not fail to solve it. 
The probability that A will failis 1 — 3 = 4; the probability that B will 
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failis 1 — } = }. Hence, by Theorem 1, the probability that both A and B 
will failis $$ = ;4. Hence, the probability that both 4 and B do not fail 
is] — 4, = 44, and this is the probability that the problem will be solved. 

Definition. Two or more events are said to be dependent if the occurrence 
of any one of them affects the probability of the occurrence of any of the 
other events. 

Thus, consider the probability of obtaining 2 clubs in two successive 
drawings from a deck of 52 cards. The probability of a club in the first 
drawing is $3 = 4. Ifthe first card drawn is replaced, the probability of a 

club in the second drawing is again 13 = }. These two events are in- 

dependent and hence, in accordance with Theorem 1, the probability of 
obtaining 2 clubs is }- } = j,. If, however, the first card drawn is a club 

and is not replaced, there are 12 clubs remaining out of 51 cards, so that the 
probability of obtaining a club in a second drawing is #7 = #4. In this 
case the probability of the second drawing is dependent on the first 
drawing. By the same reasoning used in establishing Theorem 1 on 

independent events, we may show that the probability of the occurrence of 
these two dependent events is equal to the probability of the first drawing 
multiplied by the probability of the second drawing. Hence, the probability 
of obtaining 2 clubs in this case is $- 4% = yy. 

We now state the theorem on dependent events. Since the proof is 

similar to that of Theorem 1, we leave the details to the student as an 

eXeIrcise. 

Theorem 2. (Multiplication Theorem for Dependent Events). Let p, be 

the probability of an event E, whose occurrence affects the probability p» 
of the occurrence of a second event Ey. Then P = p,pg is the probability 

that both E, and E, occur in that order. 

NOTE 3. In Theorem 2, p, must represent the probability that E, happens after 

E, has happened. 

Example 3. If 2 balls are drawn in succession from a bag containing 4 

white and 3 black balls, find the probability p that the first ball drawn is 

white and the second black if (a) the first ball drawn is replaced; (b) the 

first ball drawn is not replaced. 

SOLUTION. (a) The probability of a white ball in the first drawing is 7 

ihe a ball is replaced, the Peepapety of a black ball in the second drawing 

is 3. Hence, by Theorem 1, p = 4°} = 45. 

(b) As before, the probability & a white ball in the first drawing is 7. 

If this ball is not replaced, the probability of a black ball in the second 

drawing is 3 = 4. Hence, by Theorem 2, p = 7-3 = 7. 
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Definition. Two or more events are said to be mutually exclusive when 

the occurrence of any one of them excludes the occurrence of any other. 

Thus, the compound event of obtaining either an ace or a 3 on one throw 

of a die is composed of two mutually exclusive events, because if the ace 
appears, the 3 cannot appear, and vice versa. We can easily compute the 
probability of this event by the methods of Sec. 14.3. Thus an ace and a 3 
may each appear in one way, and we thus have two favorable cases. Since 
there are a total of 6 cases, the required probability is § = 3 by Definition 1 
(Sec. 14.2). The student will note that this result is the sum of the individual 

probabilities (4) of obtaining an ace and a 3, that is, § + ¢ = 3. Thisis an 

illustration of : 

Theorem 3. (Addition Theorem for Mutually Exclusive Events). The 

probability P that either one or another of any number of mutually exclusive 
events should occur is the sum of the probabilities of the occurrence of the 

Separate events. 

PROOF. Let there be r mutually exclusive events whose separate prob- 

abilities of occurrence are p;, Po,°**,P,, respectively. Then we are to 

show that 

Le seer bles vpn Seid is 

Suppose that out of a total of m ways in which an event can either happen 
or fail, the first event can happen in a ways, the second event in b ways, «-- , 
and the rth event in k ways, all of these ways being equally likely to occur. 
Since all these events are mutually exclusive, all these ways of occurrence 

are different, and we therefore have a total of a+ b+ ---+k ways in 
which either one event or another can occur. Hence by Definition 1 
(Sec. 14.2), we have 

a b k 
(1) DS ad UY Pc Os | UP 

n n n 

and 

Now (2) may be written 

heen n 

From (1) =p, t+ pot::: +p, 

This completes the proof. 

NOTE 4. It should be observed that in both the statement and proof of Theorem 
3, the words either—or are used. These words are characteristic of problems in 
mutually exclusive events. 
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Example 4. One bag contains 4 white and 2 black balls; a second bag 
contains 2 white and 5 black balls. Ifa single ball is drawn from one of the 
bags selected at random, find the probability that it is white. 

SOLUTION. The probability of selecting the first of the two bags is 4, and 
the probability of drawing a white ball from it is ¢ or 3. Hence, by Theorem 
2, the Coe ate Bee o both selecting the first bag and then drawing a white 
ball from it is }- } = 3. Similarly, the probability of both selecting the 
second bag and then drawing a white ball from it is }-2 = +. Since the 

white ball must be drawn from either the first or second bag, it follows from 
Theorem 3 that the required probability is } + 4 = 22. 

Many problems in probability may be solved by more than one method. 
In the following group of exercises the student will find it instructive to 
solve a problem by one method and then, if possible, check the result by 
using another. Some problems may be solved by using the methods of 
either Sec. 14.3 or Sec. 14.4. For example, under the definition of depen- 
dent events, we found that the probability P of obtaining 2 clubs in two 
successive drawings from a deck of 52 cards is equal to ,, if the first card 
drawn is not replaced. a result may also be obtained as in Sec. 14.3, 

G32 1 
ly, that P = ——~— = —. namely, that CSD, == 7 

EXERCISES. GROUP 52 

1. If the probabilities that r independent events will happen are py, Po, °° * 5 Pps 

respectively, prove that the probability that all of them will fail is 

(ep) Ie po) 22 (1h = p,). 

2. Prove Theorem | (Sec. 14.4) by using the frequency definition (Definition 2 
Sec. 14.2). Hint: Use the fact that if p is the probability of the occurrence of an 
event in a single trial, the expected number of occurrences in v trials is equal 

to mp. 

: Establish Corollary 1 of Theorem 1 (Sec. 14.4). 

4. Establish Corollary 2 of Theorem 1 (Sec. 14.4). 

5. Establish Theorem 2 (Sec. 14.4). 

6. State and prove a corollary to Theorem 2 which is analogous to Corollary 1 

of Theorem 1 (Sec. 14.4). 

7. Prove Theorem 3 (Sec. 14.4) by using the frequency definition (Definition 2, 

Sec. 14.2). 

8. A single die is thrown twice. Find the probability of obtaining an ace on 

the second throw but not on the first. 
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9. A single die is thrown 3 times. Find the probability of obtaining an ace on 

the second throw only. 

10. A coin is tossed 4 times. Find the probability of obtaining a head on the 

third toss only. 

11. Find the probability of obtaining exactly 3 heads from 4 tosses of a coin 
and the sum of 11 on one throw of 2 dice. 

12. The probabilities that A and Bcan solve a particular problem are 5 and 3 
respectively. Find the probability that the problem will be solved if both try it. 

13. The probabilities that A, B, and C can solve a particular problem are 2.6 

and %, respectively. Find the probability that the problem will be solved if all 

three try it. : 

14. A, B, and Care firing at a target and their respective probabilities of hitting 

it are 2, 2, and 2. If all three fire at the target, find the probability that it will be 

hit. 

15. Solve Example 2 (Sec. 14.4) by considering the following mutually ex- 
clusive events: both A and B succeed; A succeeds and B fails; Bsucceeds and A 

fails. 

16. Solve Example 2 (Sec. 14.4) by the following chain of reasoning. If A tries 
first, the probability that the problem will be solved by A is 3; call this Event 1. 
If A fails, the probability that B will try to solve the problem is 1 — § = 4, and 
hence the probability that the problem will be solved by Bis 3 - 2 = 4; call this 
Event 2. Then consider Events | and 2 as mutually exclusive. 

17. Solve Example 2 (Sec. 14.4) by the method of Ex. 16, but let B try first. 

18. Solve Ex. 12 by each of the methods of Exs. 15, 16, and 17. 

19. Two balls are drawn in succession from a bag containing 2 white and 

4 black balls. Find the probability that the first ball drawn is white and the 
second black if (a) the first ball drawn is replaced; (b) the first ball drawn is not 

replaced. 

20. In Ex. 19, if 2 balls are drawn at random, find the probability that they are 

both of the same color. 

21. In Ex. 19, if 2 balls are drawn at random, find the probability that one is 

white and the other is black. Add the probabilities obtained in both Exs. 20 and 

21, and account for the sum. 

22. One bag contains 2 white and 6 black balls; a second bag contains 5 white 
and 3 black balls. If a single ball is drawn from each bag, find the probability 

that both balls are of the same color. 

23. In Ex. 22, find the probability that the 2 balls are of different color. 

24. In Ex. 22, ifa single ball is drawn from one of the bags selected at random, 
find the probability that it is white. 

25. In Ex. 24, find the probability that the ball drawn is black. 
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2Om UNE Xeo2 sal single ball is drawn from the first bag and placed in the second 
bag. The balls in the second bag are then thoroughly mixed and a single ball is 
drawn from this bag. Find the probability that this ball is white. 

27. In Ex. 26, find the probability that the last ball drawn is black. 

28. In Ex. 22, a single ball is drawn from the second bag and placed in the 
first bag. The balls in the first bag are then thoroughly mixed and a single ball is 
drawn from this bag. Find the probability that this ball is (a) white; (b) black. 

29. If 3 cards are drawn at random from a deck of 52 cards, find the probability 
that they are all of the same color. 

30. If 3 cards are drawn in succession from a deck of 52 cards, each card being 

replaced before the next one is drawn, find the probability that they are all of the 
same color. 

31. A mortality table shows that the probabilities of A and B living 25 years 
longer are 0.9 and 0.8, respectively. Find the probability that at the end of 25 
years (a) both are alive; (b) both are dead; (c) A is alive and B is dead; (d) A is 

dead and B is alive. Add these results and account for the sum. 

32. The probabilities that A and B can solve a particular problem are 4 and 3, 

respectively. Find the probability that (a) both solve the problem; (b) both fail 

to solve the problem; (c) A solves the problem but B fails; (d) B solves the 

problem but 4 fails. Add the results and account for the sum. 

33. A, B, and C are entered in 3 separate races, and the probabilities that each 

wins his own race are 3, 4, and 4, respectively. Find the probability that (a) no 

one wins his own race; (b) exactly 1 wins his race; (c) exactly 2 win their races; 

(d) all 3 win their races. Add the results and account for the sum. 

34. One die is a regular tetrahedron, that is, a regular solid having 4 faces 
marked 1, 2, 3, 4; another die is the conventional cube having 6 faces marked 

from 1 to 6 inclusive. For one throw of these 2 dice, find the probability that the 
sum appearing is greater than 7. 

35. The probabilities of a favorable review of a manuscript by 3 independent 

readers are 3, 3, and 3, respectively. Find the probability that a majority of the 

3 reviews will be favorable. 

36. A and Beach throw a single die once, the one first obtaining an ace to win 

a prize. If A throws first, find their respective probabilities of winning. 

37. A and B, in that order, throw a single die alternately until one wins by 

throwing an ace. Find the probability each has of winning. Hint: Use infinite 

geometric series (Sec. 10.5). 

38. A, B, and C, in order, cut a deck of 52 cards, that is, each one draws a card 

at random and then replaces it. If the first one who cuts a diamond wins, find 

their respective probabilities of winning. 

39. A, B, and C, in order, toss a coin until one wins by tossing a head. If the 

prize for winning is $35, find their respective expectations. 

40. A and B, in that order, throw a pair of dice alternately until either A wins 

by throwing 6 or B wins by throwing 7. Find the probability each has of winning. 
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14.5. REPEATED TRIALS 

In this section we consider the problem of repeated trials, a topic of 

fundamental importance in the theory of probability and its applications. 

This problem arises when an experiment or observation is repeated a 
number of times under the same conditions. 
We have previously used the term trial without formally defining it 

(Sec. 14.2). Now, for clarity of exposition and precision of statement, we 

will define this term and several others. 
A simple event is said to undergo a single trial if it must either happen or 

fail once. : 
Thus, one toss of a coin constitutes a single trial since the coin must fall 

either a head or a tail once. We note that a trial has essentially the 

characteristics of an experiment. 
A simple event is said to undergo a repeated trial if it must either happen 

or fail once under exactly the same conditions as any other trial of the 

event. 
Thus, two or more tosses of a coin constitute repeated trials, for in each 

toss the coin must fall either a head or a tail once under exactly the same 
conditions. 

If an event happens in a single trial, it is convenient to say that the event 
succeeds, that the trial is a success, and that the probability of the event 

happening is the probability of success. Similarly, if an event fails to happen 

in a single trial, we say that the event fails, that the trial is a failure, and 
that the probability of the event failing to happen is the probability of 
failure. 

As a simple introduction to our next theorem, let us consider 

Example 1. Determine the probability P of obtaining exactly 3 aces in 
5 throws of a single die. 

SOLUTION. Each throw ofa single die is a trial. Let the act of obtaining 

an ace be considered a success. Then, in a single trial, the probability of 

success is 4 and the probability of failure is 1 — } = 3. We are then to 

determine the probability of exactly 3 successes in 5 trials. 

The probability of success in a single trial being 4, the probability of 3 
successes is (¢)? in any 3 specified trials (Cor. 2, Theorem 1, Sec. 14.4). As 

there are 5 trials, 3 successes must be accompanied by 2 failures. The 
probability of one failure being 3, the probability of 2 failures is (8). 
Hence, by the multiplication theorem (Theorem 1, Sec. 14.4), the proba- 
bility of both 3 successes and 2 failures is (4)3(8)?. But these 3 successes 
may occur in any 3 of the 5 trials. Thus, 3 aces may appear either on the 
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first 3 throws or on the second, fourth, and fifth throws, and so forth. 
That is, we may obtain 3 aces in as many different ways as we can select 
3 things from 5 things, or in C(5, 3) ways. Since these different ways are 
mutually exclusive, it follows by the addition theorem (Theorem 3, Sec. 
14.4) that our required probability is the sum of C(5, 3) terms each equal to 
(&)°(8), that is, 

p= 065.3 (If (Sf_ 5244.25 28. 
6/ \6 ee 6; OLS SSS 

The preceding example is an illustration of the general theorem which 
we state as 

Theorem 4 (Binomial Law). For a single trial of an event, let p be the 
probability of success and q = 1 — p the probability of failure. Then the 

probability P, of exactly r successes in n repeated trials is given by the 
formula 

(1) Pe Cnt) piges =n. 

PROOF. The probability that the event will happen in r specified trials 
is p’ and that it will fail in the remaining n — r trials is q”~" (Cor. 2, 
Theorem 1, Sec. 14.4). The probability of both r specified successes and 
the accompanying n — r failures is then p’g"~” (Theorem 1, Sec. 14.4). 
But r successes may be selected from x trials in C(n, r) different ways all of 
which are equally likely and mutually exclusive. Hence, by Theorem 3 

(Sec. 14.4), the required probability P, is given by the formula (1) 

above. 

NOTE 1. By relation (2) of Sec. 13.7, we see that P;, as given by relation (1) 

above, is the (7 — r + 1)th term in the binomial expansion of (p + q)”. Theorem 

4 is therefore often called the Binomial Law. 

By means of Theorem 4 we may easily establish 

Theorem 5. For a single trial of an event, let p be the probability of 

success and q = 1 — p the probability of failure. Then the probability P, of 

at least r successes in n repeated trials is given by the relation 

(2) Pa Cat) Dida eee etl 

PROOF. If the event is to happen at /east r times in n trials, it must happen 

either exactly n times, or exactly n — | times, or exactlyn — 2 times,~- >, 

or exactly r times. In other words, we have the following n —r +1 
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mutually exclusive events: 

Event Probability 
No. Happens Exactly by Theorem 4 

1 ntimes =n — (1) + 1 C(n, n)p"q”” = p” 

2 n —1 times =n — (2) +1 C(n, n — 1)p"q 

3 n — 2 times =n — (3) +1 C(n, n — 2)p"*q? 

Sher seat rtimes =n —(n —r+1)+1 C(n, r)p'g”* 

Adding these probabilities by the addition theorem (Theorem 3, Sec. 

14.4), we have 

(3) Py =p" + C(n,n — l)p""q 
+ C(n, lt = 2)p"*q2 ab tae aie C(n, rp ate 

which, in view of our sigma notation (Sec. 13.6), may be written in the form 

of relation (2) above. 

NOTE 2. By Theorem 8 of Sec. 13.7, the right member of (3) represents the 

first n — r + 1 terms in the binomial expansion of (p + q)”. 

Example 2. A coin is tossed 8 times. Find the probability that at least 
6 heads appear. 

SOLUTION. For a single toss, the probability of a head is p = $; hence 
the probability of a tail is g = 1 — p = $. In this problem the number of 
trials is nm = 8. Then in accordance with Theorem 5, the required proba- 
bility P, is the sum of the probabilities of obtaining exactly 8 heads, 
exactly 7 heads, and exactly 6 heads. Hence, 

P, = C(8 a(t} + C(8 n(4)(4) + C8 o(+}(4) 
: Pal SEND ND PND ND 

1 : iid bros 29 
fen! SUR ry paral : 

Be [238 256 

Example 3. From a deck of 52 cards, a single card is drawn at random. 
The card is then replaced, the deck is thoroughly shuffled, and again a 

single card is drawn at random. This process is performed a total of six 
times. Find the probability of obtaining at least 1 heart. 

SOLUTION. The student may at first be inclined to solve this problem by 
the method used in the preceding example, that is, to add up the six 
separate probabilities of obtaining exactly 1 heart, exactly 2 hearts, ---, 
exactly 6 hearts. But the same result may be obtained much more easily if 
we compute the probability of failing to get a heart six times in succession 
and then subtract this probability from unity. 
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The probability of obtaining a heart in one draw or trial is # = 4; 
3 hence the probability of failing to get a heart in one trial is 1 — a 

Then the probability of failing to obtain a heart in six successive trials is 
({)°. Hence the probability of not failing to get a heart in six successive 

trials is 1 — (;) =1- ie ac and this is the babili 4 4096 4096’ eee ys Ot 
obtaining at least 1 heart in six trials. 

NoTE 3. The student will see in the next section that the required probability 
in Example 3 is the sum of all the terms except one in a binomial expansion whose 
value is unity. Hence it is much easier to obtain the required result by computing 
the one exceptional term and then subtracting this value from unity. 

14.6. BINOMIAL EXPANSION 

It was observed in both Theorems 4 and 5 of the preceding section that 

the various probabilities appearing in the problem of repeated trials are 
terms in the binomial expansion of (p + q)”, where p is the probability of 
success and gq = | — pis the probability of failure in each of 7 trials. By 
Theorem 8 (Sec. 13.7), this expansion may be expressed as 

CGRP SUSE CALE 3) 

which we may write out in the form 

(1) | +p)" = Clr, O)pg” + C(n, Dpg"™ + Cln, 2)p?q"™ 
+-++++ C(n,n — 1)p"1¢q + C(n, n)p"@?, 

where C(n, 0) = 1, C(n, 1) = n,+-+-, C(n,n) = 1 are the usual binomial 

coefficients. The terms of this expansion, taken in order, represent, 
respectively, for n trials, the probabilities of exactly no successes and n 

failures, 1 success and — 1 failures, 2 successes and n — 2 failures, ---,n 

successes and no failures. Hence these terms represent the probabilities of 

all possible cases and since these events are mutually exclusive, their sum 

must be equal to unity. That this is so follows from the fact that since 

aI ah AC ar De Laas 
In general, the successive terms in the expansion (1) increase up to a 

certain value (or possibly two equal values) and then decrease. This term 

is called the maximum and has the property that its ratio to the preceding 

term and to the following term is greater than or equal to unity in each case. 

We will now determine this maximum term. More specifically, we will 

determine the value of r (number of successes) for which the general term 
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C(n, r)g"~"p" in the binomial expansion of (g + p)” is a maximum. We 

have first the ratios 

) r + 1)th term (2) (r + 1th term 
= is 

rth term 

(r + 1)th term ry 

3) (r + 2)th term — 

From (2) we have 

Ci ng  p wide n! (= Dir rt 

Cit poalign * tp gari(n— 7)! n! 

sof iden Lee 
q r 

whence Ap — pr +p 2 gr: 

Since g = 1 — p, Dia ap pia OL 

(4) np | peer. 
From (3) we have 

CGE) =p mae n! tat, Let ete) 

Car )qs sip = perl n=»! n! 

— q a r LE 1 Ss ills 

pn-r 

whence gr +g = np — pr. 

Since gr = (1 — p)r, r— pr--ig 2 ng — pr. OT 

(5) Tl 1G 

Hence, from (4) and (5), we have 

(6) n+p >r>np—4q. 

From (6) we see that the integer r lies between two values which differ 
from each other by unity, for p + q = 1. We record this result as 

Theorem 6. For a single trial of an event, let p be the probability of 
success and q = | — p the probability of failure. Then in n repeated trials, 

the number of successes r having the greatest probability of occurrence is an 
integer which lies between np + p and np — q. 

It is usual to take np as the value of r giving the maximum probability. 
From Theorem 6 we have the following appropriate 
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Definition. The most probable value of the number of successes r in n 
repeated trials is an integer to which corresponds a greater probability of 
occurrence than to any other value of r. Its value is approximately equal to 
np where p is the probability of success in a single trial. 
We will now illustrate the preceding theory of the binomial expansion by 

several numerical cases. In our first example, for simplicity, we will 
consider only the binomial coefficients in the expansion of (q + p)”. 

Example 1. For the binomial expansion of (q + p)’, draw a graph on 
which each point has the number of a term as its abscissa and the value of 
the corresponding binomial coefficient as its ordinate. 

SOLUTION. By Sec. 13.7, for n = 8, we readily find the nine binomial 

coefficients, taken in order, to be 

02 0e 0, 0 6 285. Ss le 

The coordinates of the points, as shown in Fig. 41, are (1, 1), (2, 8), 

(3, 28), and so on. A “smooth” curve is drawn through these points. We 

¥] 
A 

IO. 

Value of coefficient 
5 8 5 6 68 

| 

ine) (<2) | 

ran jo) 

>X 

No. of term 

Figure 41 

call this curve the graph of the coefficients although it is only an approxima- 

tion, for we have no data on the graph between points. But as, and there- 

fore the number of terms, increases, the resulting graph approaches more 

and more closely the shape shown in Fig. 41. This bell shape is typical of 

probability curves, which we will discuss later. 
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In the next numerical example we will consider the graphical representa- 

tion of the values of the individual terms, and not just their binomial 

coefficients, in the expansion of (¢ + p)”. 

Example 2. Find the values of the individual terms in the binomial 

expansion of (2 + 2), and set up a table with the following six columns of 

corresponding values: 

(1) Number of term in expansion. 
(2) Value of r (number of successes). 

(3) Probability P, of exactly r successes. 
(4) Probability P, of at least r successes. 
(5) Individual frequency. 
(6) Cumulative frequency. 

Plot two curves, each to have the values in column (2) as abscissas, one 

curve to have column (3) and the other to have column (4) as ordinates. 

Compute the most probable value of r and verify it in the table. 

SOLUTION. Table | shows the required values. 

TABLE. 1 

EXPANSION OF (2 + 3)8 

n=6, p=; 9 = 1 —p=# 

Probability Frequency 

Exactly r successes 
in n trials = value At least r 

of term successes in trials Individual Cumulative 

No. 

of 5) 

Term or Py= Ci, rpg" Po = > Ca,rpg*  nP; ie 
r=0 

Cy @) (3) (4) (5) (6) 

1 0 0.004096 1.000000 0.024576 6.000000 
2) 1 0.036864 0.995904 0.221184 5.975424 
3 D 0.138240 0.959040 0.829440 5.754240 
4 3 0.276480 0.820800 1.658880 4.924800 
5 4 0.311040 0.544320 1.866240 3.265920 
6 5 0.186624 0.233280 1.119744 1.399680 
1 6 0.046656 0.046656 0.279936 0.279936 
Totals 1.000000 6.000000 
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Probability 

[e) on 

Cumulative 

Individual 

| | | I 
O 1 2 3 4 5) 6 

r (number of successes) 

Figure 42 

Columns (3) and (4) follow from Theorems 4 and 5, respectively, of 

Sec. 14.5. Columns (5) and (6) give the frequency or expected number of 
occurrences inn (= 6) trials (Sec. 14.2). The values in column (5) con- 

stitute what is known as an individual frequency distribution and the values 
in column (6) a cumulative frequency distribution. Columns (5) and (6) 

pair off with columns (3) and (4), respectively, (3) and (5) giving individual 
values and (4) and (6) cumulative values. 

It should be noted that the sum of the values in column (3) is unity, the 

value of certainty. This must necessarily be so, for it represents the sum 

of the probabilities of all possible cases. A similar remark applies to 
column (5) where the sum of the values is 6, the total number of trials. 

We next plot the values in column (2) as abscissas and the values in 
columns (3) and (4) as ordinates. The results are the two curves shown in 

Fig. 42 and known as probability curves. We note that the individual curve 
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has approximately the bell shape typical of probability curves. This curve 

is not symmetrical like the curve in Fig. 41; it is then said to be skew. If 

p =4q=}3, however, the individual probability curve is symmetrical. 

The points on the cumulative curve give the probability of r or more 

successes. 
By Theorem 6, the most probable value of r is given by 

np P= Te np = a. 

- 
5 

For n= 6, p==,.¢ = 
Mlb a 8S) 5 Mlw 

or ays 5 
5 5 

Hence the most probable value of r is 4, and for this value the table gives 
P, = 0.31104, the maximum individual probability. 

We can also plot the values in columns (5) and (6) but since they are 
proportional, respectively, to the values in columns (3) and (4), the result- 
ing curves appear similar in shape to those in Fig. 42. They are called, 

respectively, individual and cumulative frequency curves. 

NoTE. This example is for a very limited range with the number of trials n = 6. 

For larger values of n, the amount of computation increases considerably, but the 

probability curves exhibit the same basic characteristics. As m increases, the 

individual graph comes closer and closer to a smooth, bell-shaped curve. 
When the observations or values of a set are proportional to the terms of a 

binomial expansion, they are said to form a binomial distribution. There are 
various types of distributions; among them is the normal distribution leading to 

the well-known normal probability curve. These distributions and their corre- 

sponding frequency curves are of fundamental importance in the science of 
statistics, but their discussion is beyond the scope of this book. 

EXERCISES. GROUP 53 

1. Establish Theorem 5 (Sec. 14.5) by considering the events to happen 

exactly r,r + 1,r + 2,---+,m times, and show that the result is exactly the same 

as relation (2) except that the summation is in reverse order. 

2. A coin is tossed 6 times. Find the probability of obtaining exactly 2 heads. 

3. A single die is thrown 6 times. Find the probability of obtaining exactly 

5 aces. 

4. The probability that A wins a certain game is 3. If 7 of these games are 
played under exactly the same conditions, find the probability that 4 wins exactly 

4 of them. 

5. A coin is tossed n times. Show that the probability of obtaining exactly r 
tails is C(n, r) + 2”. 
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6. From a deck of 52 cards, a single card is drawn at random. The card is 
then replaced, the deck is thoroughly shuffled, and again a single card is drawn at 
random and then replaced. This process is performed a total of 5 times. Find 
the probability of obtaining exactly 3 spades. 

7. From a bag containing 3 white and 2 black balls, a single ball is drawn at 
random. The ball is then replaced, the balls are thoroughly mixed, and again a 
single ball is drawn at random. This process is performed a total of 4 times. Find 
the probability of obtaining exactly (a) 2 white balls; (b) 4 black balls. 

8. In 6 throws of a pair of dice, find the probability of obtaining exactly 
three 7’s. 

9. A baseball player whose batting average is 0.300 comes to bat 4 times in a 
particular game. Find the probability that he gets exactly 2 hits. 

10. On the average, a certain student correctly solves 5 out of every 6 problems 
that he attempts. In a test consisting of 8 problems, find the probability that he 

solves exactly 6 correctly. 

11. A coin is tossed 10 times. Find the probability of obtaining at least 8 

heads. 

12. A single die is thrown 7 times. Find the probability of obtaining at least 5 
aces. 

13. A pair of dice is thrown 5 times. Find the probability of obtaining at least 

TOU /S: 

14. The probability of A winning a single game is §. Find the probability that 
in a series of 6 games, he will win at least 4 of them. 

15. On the average, a marksman hits a target 300 times in 400 shots. Find the 
probability that he will hit the target at least 3 times in 5 shots. 

16. In the manufacture of a certain article, it is found in the long run that | per 

cent of the product is defective. For a random sample of 10 articles, find the 

probability that not more than 2 are defective. 

17. The passing mark for a test consisting of 10 problems is 70 per cent. On 

the average, a certain student solves correctly 4 out of every 5 problems that he 

attempts. Find the probability that he will pass the test. 

18. It is found by inspection that, on the average, one out of every 50 auto- 

mobiles has defective headlights. Find the probability that out of 10 automobiles 
taken at random, at least one will pass the inspection of headlights. 

19. The probability that a man 50 years old will be alive 20 years later is 0.6. 
Out of a group of 5 men aged SO, find the probability that at least 4 will be alive at 

70. 

20. A and B play a game in which 4’s skill is to B’s skill as 3 is to 2. Find the 

probability that A wins at least 1 game out of 4. 

21. If g is the probability that an event will fail in a single trial, show that the 

probability of at least one success in 7 trials is 1 — q”. 

22. If pis the probability that an event will occur in a single trial, show that the 

probability of at least one failure in 7 trials is 1 — p”. 
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23. Acoin is tossed 8 times. Find the probability of obtaining an odd number 

of heads. 

24. A continues to throw a single die until a 6 appears. Find the probability 

that he will have to make (a) at least 10 throws; (b) exactly 10 throws. 

25. A box contains 6 cards all marked differently. One card is drawn at ran- 

dom and then replaced. The cards are thoroughly shuffled and another card is 
drawn at random and then replaced. This process is performed a total of 6 times. 
Find the probability that every card has been drawn. 

26. A coin is tossed 8 times. Find the most probable number of heads and the 

probability of that number. 

27. A coin is tossed 10 times. Find the most probable number of tails and the 

probability of that number. ; 

28. A die is thrown 12 times. Find the most probable number of aces and the 

probability of that number. 

29. The probability of A winning a single game is 3. Find the most probable 

number of his victories in a series of 12 games and the probability of thatnumber. 

30. In Theorem 6 (Sec. 14.6), if mp + p and np — q are integers, show that r 
has two values, that is, show that there are two equal terms in the expansion of 

(q + p)”, each of which is larger than any other term. Verify this for the expan- 
sion of (4 + 4)’. 

31. A coin is tossed 9 times. Find the probability of either one of the most 

probable number of heads. 

32. For a single trial of an event, let p be the probability of success and g the 
probability of failure. If, for m repeated trials, mp is an integer, show that the most 

probable number of failures is equal to ng. 

33. As in Example | of Sec. 14.6, draw the graph for the binomial coefficients 

of (¢ + p)'®. 

34, Asin Example | of Sec. 14.6, draw the graph for the binomial coefficients 

ot ¢ + p)®. 

35. Plot the individual and cumulative frequency curves for the binomial 

expansion of Example 2 of Sec. 14.6. 

In each of Exs. 36-40, for the given binomial expansion, as in Example 2 of 

Sec. 14.6, make up a similar table of computations, plot the same types of curves, 

and make the same kind of analysis. 

36. & + 4)*. 37. (§ + 4). 38. @ +3). 39. @ +4). 

40. (eit Is yee 
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Determinants 

15.1. INTRODUCTION 

The subject of determinants has been studied extensively over a con- 
siderable period of time. Although the concept of a determinant had its 
origin in the solution of a system of linear equations, it has since been used 
in a great variety of situations. Thus, as will be noted in several exercises 
of this chapter, the equations of certain geometric curves and figures may 

be written in determinant form. Also, there are numerous instances where 

a property or relation depends upon the value of a special determinant. 
Furthermore, determinants are useful in the study of matrices, which, as 

we have previously noted (Sec. 1.6) are important in modern mathematics 
and physics. 

The principles and evaluation of determinants are fairly easy to compre- 

hend. Such difficulties that the student may encounter in his introduction 
to the subject are due mainly to the fact that he must learn some new 
rules of procedure. The arrangement of the material of this chapter 
takes this fact into account. Accordingly, we will start by illustrating 
both principles and operations when applied to the simplest forms of a 

determinant. 

15.2. NATURE OF A DETERMINANT 

It is necessary at the very outset for the student to have some idea of the 
form and nature of a determinant. We therefore state that a determinant 
of order n, designated by A,,, is represented, as shown in (1), by a square 

321 



322 Determinants Ch. 15 

array of n® quantities, called elements, arranged in n rows and n columns. 

Cie eee 

a, by ly 

(1) NG ee 1h ol eae rae 

due le 

It is customary to enclose this array by two vertical lines. 
For convenience, we refer to the rows and columns by numbers. Thus, 

the first row consists of the n elements a,, b,°+- , 4, the second row of the 

nelements dy, by,***, /5,and soon. Similarly, the first column consists of 

the n elements a, a,°°:,a,, the second column of the n elements 

b,, by,***,b,,and so on. It must be emphasized that we have not defined 

the term determinant here; we have merely given a description of its 
appearance and not its value. Although we will give a precise definition in 
a later section, it will be sufficient at this point to state that a determinant is 

equal to the algebraic sum of terms, each of which is the product of n 
elements, one and only one from each row and from each column. 

Since ” represents the order of a determinant, it follows that a determin- 
ant of order 2 has 2 rows and 2 columns, a determinant of order 3 has 3 rows 

and 3 columns, and so on. Hence the determinant of lowest order is 

obtained for n = 1 and may be represented by |a,|. It has simply one 
element, one row, and one column, and its value is defined as the element 

itself, that is, |a,| = a,. We will, in general, consider only determinants of 

order 72h. 

NOTE. The student should be careful not to confuse the vertical lines used as the 

symbol of a determinant with the vertical lines used to designate the absolute 
value of a quantity (Sec. 2.4). Thus, as an absolute value, | —4| = 4, but as a 

determinant, |—4| = —4. 

15.3. DETERMINANTS OF ORDER 2 

We exhibit the determinant of order 2 as 

where the elements a, and dy are said to lie along the principal diagonal. 
The value of A, is defined as the product of the elements on the principal 
diagonal minus the product of the elements on the other diagonal. That is, 
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by definition, 

a, by 
(1) P Aika ab, — aby, 

a 

where the right member is called the expansion of AS 
Thus, as a numerical illustration, we have 

2ar3 

Eid =2°1—(—4"3)=2-4 12 = 14. 

We will now show how determinants of order 2 are associated with the 
solution of a system of 2 linear equations in 2 variables. In Sec. 4.7 we 
established Theorem 2, part of which we repeat here for convenience. 

The linear system 

ar + by = cy, 
(2) 

a,x + bey = Cy, 
has the unique solution 

ee bec, — byCy oe Se 

Gis — a,b. © Ayb, — agb, 

if, and only if, ab, — ab, 4 0. 

Now, in view of our definition of a determinant of order 2, the solution 

of the system (2) may be written in determinant form as follows: 

cy by ay Gh 

oy Soke SS ee ele 
a, OF a, Dy GeaeDs 

Tipe es Gs 

We observe that each value in the solution has a common denominator, 

which is called the determinant of the system. Also, for the value of x, the 

numerator is obtained from the denominator by replacing the first column 

of coefficients a, and a, by the constant terms c, and Cg, respectively. 
Similarly, for the value of y, the numerator is obtained from the denomina- 

tor by replacing the second column of coefficients b, and b, by the constant 

terms c, and c,, respectively. 

NOTES. 1. It is evident that if one or more elements of a determinant are 

interchanged, the value of the determinant may be changed. Hence, in using the 

determinant form of solution (3), it is highly important to form the columns of 

coefficients in the correct order. For this reason, the system (2) should always be 

written so that the same variables appear under each other and the constant terms 

are on the right-hand side. Ifa variable is absent, its coefficient is taken as zero. 
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2. The determinant solution (3) is known as Cramer’s rule. We will see later 

that this rule applies to the general case of a system of n linear equations in n 
variables, where n is any positive integer. 

As an illustration of Cramer’s rule we have the following 

Example. Using determinants only, solve the system 

22 + 3y+1=0, 

2y — 3% = 8. 

SOLUTION. Ir accordance with Note 1 above, we rewrite the given 

system in the form 
2x + 3y = —1, - 

ch pa sem 

Our next step is to evaluate the determinant A of the system, for we have 
a unique solution if, and only if, A 0. We find here that 

eae SoG Dey SS ey 
Sam 

Then, by Cramer’s rule, we have 

=i 3 

Or 224 
CS — —2, 

A = 

2 nat 

3 —8 = 1 GrheS 

A = 13 

At this point it will be advantageous to discuss some of the properties of 
determinants, for they may be illustrated very simply by means of deter- 
minants of order 2. Later these properties will be presented as theorems 
which hold for determinants of any order. 

PROPERTY |. If the corresponding rows and columns of a determinant 
are interchanged, the value of the determinant remains unchanged. 

a, b 
Thus, : = a,b, Se agby, 

ay by 

a a 
and BE abs bias. 

b, bs 

In view of this property, it follows that any theorem on determinants 
which is true for its rows is also true for its columns. 
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PROPERTY 2. If every element of any row (or column) is zero, the value 
of the determinant is zero. 

0 0 

PROPERTY 3. If two rows (or columns) of a determinant are inter- 
changed, the value of the determinant is changed in sign but not numeri- 
cally. 

Thus, = 0(b,) — b,(0) = 0. 

a, b 
Thus, ; 1 = a,b, — aghy, 

a, be 

a, Ob, a, b 
and . = = ayb, as a0, = : . 

a, 5, Gs 0> 

PROPERTY 4. If the corresponding elements of two rows (or columns) 
of a determinant are equal, the value of the determinant is zero. 

a, b, 

a, b, 

PROPERTY 5. If each element of a row (or column) of a determinant is 

multiplied by the same number k, the new determinant has a value equal 
to k times that of the original determinant. 

ka, kb, 
Thus, kab, — aykb, 

fig de 

whl Viral nc Pe eA 
Go Ds a 

PROPERTY 6. If each element of some row (or column) of a determinant 

is the sum of two quantities, this determinant may be written as the sum 

of two determinants, that is, 

a,+a, by ey by be ay by 

Ay + a,’ by a, by ay’ by 

Thus, Gi ed 62 = dyby + ay'by — agby — ag'by 

ag + ais bs 

= (a,b, = dyb,) =F (a,'b, oe. As'b,) 

me. ay by th a,’ by 

da by fon Dy 
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PROPERTY 7. If each element of any row (or column) of a determinant is 

multiplied by the same number k and added to the corresponding element 

of another row (or column), the value of the determinant remains un- 

changed. That is, 

Gy) Dy) Gp ako Dy 

Thus, Diao tact oe aby + kbyby — (agby + kbybs) 
dg + kb, by 

= a,b, — a,b, = eat : 
dal Dg 

EXERCISES. GROUP 54 

In each of Exs. 1-7, evaluate the given determinant. 

3 4 —2 | 256 3) 
il, : . 

By 7 -4 4 -2 —3 -1 

fe OG) i x+1 2 
5, 6. The F 

Wie i yy? x? 2u «2 —3 

In each of Exs. 8-9, solve the given equation for 2. 

She Tete-16 
8. = 0. = 

Ca lv+2 

In each of Exs. 10-15, solve the given system, using determinants only. 

NO, 2ae = Bor = S), She 4b Dap = il. 11. 22 + 3y =4,2 —y =7.: 

24s — all eeteae alle 13. 2% + 3y =6,2 —y +7 = 0. 

14, 3x + 2y = 0, 3y — 2x = 0. IB), 4a GE OXY, = By hn Sie ly) ce 8). 

16. Establish Property 4 (Sec. 15.3) by using Property 3. 

17. By means of Property 5 (Sec. 15.3), show that if all the elements of any row 
(or column) of a determinant have a common factor, the expansion of the 

determinant also has that factor. 

a, b, ka, by; a, kb, a, bs 
18. Show that k = = = : 

ay by kay by a, kb, ka, kbs, 

a, by + by ak, 10) Gaby 
19 Showthat|e eenn po ee aa ae 

ay by + by’ ay by Ay by’ 

20. As an extension of Property 6 (Sec. 15.3), show that 

a +a, +4," b, a, 0b; a,’ b, ay” by; 

a, + dy - a,” b5 P ay by a>’ by ay” bo 
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21. Establish Property 7 (Sec. 15.3) by showing that 

a, b, a, + kay by + kby 

ay by As bs 

22. Establish Property 7 (Sec. 15.3) by using Properties 6, 5, and 4. 

23. Verify Property 7 (Sec. 15.3) by means of numerical examples. 

a, +a, by; +6, a,b B 
PAw@Sheyethath twat he tag leas ini ial Holston 

Qa + ay’ by + by’ a> 0s As’ by 

a, by’ ay’ by 

Ay be’ a’ by’ 

a, +b, b, +5,’ a, b ab ly, la” 
Psmshow thet | fo hee | ae me 

ag —- bs bs + by’ As bs ag las" bs b,’ 

15.4. DETERMINANTS OF ORDER 3 

We now go one step further and study the determinant of order 3, 
which we exhibit as 

a by GY 

(1) Ag =|a, by Cy 

Gs Ds) Cc, 

and define by the expansion 

(2) A, = a,becz — aybgCg — Apb\C3 + AzbCo + agbgcy — azboC). 

The expansion (2) may, of course, be used as a formula for evaluating 
any determinant of order 3. However, this formula is not convenient in 

evaluating a determinant with numerical elements, for, in substituting, we 

must be careful to assign each element its proper row and column. For 
this reason there are in common use two arrangements whereby it is pos- 
sible to obtain the terms of the expansion as the products of elements 
along certain diagonals. However, since these two devices cannot be used 

for determinants of order higher than 3, we will not consider them here. 
Instead we shall use a method applicable to a determinant of any order 

and, because it is the most convenient method, we shall employ it 

hereafter. 
The basic idea in this method of evaluation is to express the expansion of 

a given determinant in terms of determinants of lower order. Thus, by 

expressing a determinant of order 3 in terms of determinants of order 2, 
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we can readily obtain its value, for determinants of order 2 are easily 

computed. This method of expansion is known as development by minors. 

Definition. The minor of an element of a determinant is the determinant 
of next lower order obtained by deleting the row and column in which that 

element lies. 
Thus, for A, as given in (1), the minor of the element 5, is obtained by 

striking out the first row and second column in which 5, lies. The minor 

J (On : sae : 5 Wah tae 
is then] - ~?|,a determinant of order 2. Similarly, the minor of c,is a i a 

3 ~3 3°%3 

and so on. 

Closely related to the term minor is another term for which we have the 

Definition. The cofactor of an element of a determinant is equal to the 
minor of that element preceded by a plus or minus sign depending on 
whether the sum of the number of the row and the number of the column 

in which that element lies is even or odd. 
Thus, for Ag, the cofactor of the element c, in the first row and third 

Pld, Ose Be 
column is ps i since 1 + 3 = 4,an even number. Similarly, the cofactor 

373 b,c 

of the element a, in the second row and first column is —| ,* y since 

2+ 1 = 3, an odd number. ae 

At this time we will state without proof an important theorem which we 
shall use hereafter for evaluating any determinant. 

Theorem. The value of any determinant of order n is equal to the sum of n 
products each of which is formed by multiplying each element of any one row 
(or column) by its corresponding cofactor. 

The determinant is then said to be expanded with respect to the elements 

of that particular row (or column). 
It is easy to verify this theorem for As. Thus, expanding A, with respect 

to the elements of the first row, we have 

b C a Cc a b ao 2 2 2 2 

bs Cg a3 Cs a3 bs 

= A1b5C, aa a,b 5C, ad Aob,Cy + Agb4Co + Ayb3cy a Ga0ecy, 

which agrees with the expansion (2) above. 
Note that the theorem states that this expansion may be made with 

respect to the elements of any one row (or column). Thus, expanding A, 
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with respect to the elements of the second column, we have 

ats ay c Gh © 
Tate = —b, ‘ <a bs : iby 

a3 C3 ag C3 

which also agrees with the expansion (2) above. 
We will next illustrate the theorem by a numerical example, but, before 

doing so, we call attention to 

NOTE |. For neatness and compactness, negative elements in a determinant 
will hereafter be written with the minus sign above instead of in front of the 
element. 

Example 1. Evaluate the following determinant by expansion with 

respect to the elements of (a) the third row; (b) the second column: 

1ac4 ee? 

A, =|3 1 Ol. 

5 

SOLUTION. (a) A; =5 : ee oie +3 ae 

ad) 3.0 ermal 

= 10-— 124+ 3 +4 36 = 37. 

et dae? 2 (b) A; = —4 +1 —(=2) 
igh) yee Shee 10) 

= 36 +3 + 10 — 12 = 37. 

When the theorem is applied to a determinant of high order, it is evident 

that the complete expansion entails a considerable amount of arithmetical 

computation. We now make the important observation that if a particular 

row (or column) has one or more zeros, this computation is considerably 

reduced by expanding with respect to that row (or column). Moreover, 

it is possible to create such zeros without changing the value of the deter- 

minant by using Property 7 (Sec. 15.3). We illustrate the process in 

Example 2. By creating as many zeros as possible in some one row or 

column, evaluate the determinant 

oa 

R= 4a 254. 

SO 
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SOLUTION. Property 7 (Sec. 15.3) states that if each element of any row 

(or column) of a determinant is multiplied by the same number k and 

added to the corresponding element of another row (or column), the value 
of the determinant remains unchanged. Thus we can create one zero 
element in the first row and first column by multiplying each element of 
the second column by —2 and adding the result to the corresponding 

element of the first column. This gives us 

per UL Mes Se 

(3) Ae | ted BS, | ail Cees 

see ly Ay [oo ; 

We can now create another zero element in the first row and third 
column by multiplying each element of the second column by 3 and adding 
the result to the corresponding element of the third column. Then, from 
(3), we have 

(ae, epee Onin. 

ING elles 9) Sy ts ie ek ilip 

ft 2476 1422] 

We have shown these operations in two steps for clarity, but since the 
operating column is the same (the second) in both steps, we can show the 
result in one step. Furthermore, the arithmetical work can be performed 

mentally and the results put down immediately. We will also hereafter 
indicate the operating column (or row) by an asterisk. Our work will now 
appear compactly as follows: 

* 

Dae 3 One ieZ0 

(4) AV=1 4" oo =| Oe 

Se? ey Teper l 

By expanding with respect to the elements of the first row in (4), we have 
only one minor to compute, that is, 

= —(-8 —1) = 9. 

In general, by using Property 7 (Sec. 15.3), it is possible to transform any 
given determinant into another of the same value but having all zero 
elements, except one, in some row (or column). By expanding this new 
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determinant with respect to the elements of that row (or column), we 
obtain a single determinant of the next lower order. Note that if the use of 
Property 7 produces all zero elements in some row (or column), the given 
determinant is equal to zero by Property 2 (Sec. 15.3). 

Since this method is efficient for evaluating any determinant, and is 
therefore the method we shall use hereafter, we set up the procedure here 
for future reference. 

Procedure for evaluating any determinant 

1. Select an operating row (or column) in the given determinant and 
indicate it by an asterisk. 

2. In accordance with Property 7 (Sec. 15.3), multiply each element of 
the operating row (or column) by such a number that, when added to the 
corresponding element of another row (or column), at least one zero ele- 

ment is obtained. 
3. Repeat Step 2 as often as necessary in order to obtain an equivalent 

determinant in which all the elements, except one, of some row (or column) 

are zero. 
4. Expand the determinant obtained in Step 3 with respect to the row (or 

column) having all zero elements except one, thus obtaining a single 
determinant of the next lower order. 

5. Repeat the preceding process for the determinant obtained in Step 4. 
6. Continue this procedure until a determinant of order 2 is obtained, 

and evaluate it. 

We will illustrate the above procedure by applying it to a determinant of 

order 4. But before doing so, we call attention to 

NOTE 2. The creation of zero elements by the use of Property 7 is simple 

provided that we have a unit element in the operating row (or column), otherwise 

the process involves fractions and cumbersome arithmetic. But in such cases a 

preliminary use of Property 7 can produce the required unit element, as the 

following example illustrates. 

Example 3. Evaluate the determinant 

De REY 

See) a3 

Bs Monts 

OE 
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SOLUTION. The various steps in the evaluation are exhibited first; the 

explanation follows. 

gE ES) 3125 Ayes MOTE 

BD Ty pee) See eas {1 ODEN 1143 

Pia 60 5 Weis | 408 6 15) a ee 

5722: >2 94 cme ee! OF eae 

A 
(ties Qmiiets Gueitoaris 

SAS 3 OOO MER 12020 ie ee 

he akon Ts 7) = 6 0 82 134 

LEAS 82) ey Cen 7s s3\eetate 
62m ind 41 67 

EXPLANATION. The given determinant has no unit element. But by 
adding the second row (indicated by an asterisk) to the first row, we obtain 
a unit element in the first row and second column. 

Using Property 7 with the second column as an operating column 

(indicated by an asterisk), we obtain 3 zero elements in the first row. 

Expanding with respect to the elements of the first row, we obtain a 
single determinant of order 3. Since this determinant has no unit element, 

we subtract the second column (indicated by an asterisk) from the first 
column. This gives us a unit element in the second row and first column. 

Then by adding 7 times the elements of the second row (indicated by an 
asterisk) to the corresponding elements of the third row, we obtain a 
determinant of order 3 with two zero elements in the first column. 

Expanding this last determinant of order 3 with respect to the elements 
of the first column, we obtain a single determinant of order 2, which is 

readily evaluated as shown. 

Since this section is primarily concerned with determinants of order 3, 
we will now consider the solution of a system of 3 linear equations in 3 
variables : 

aye + by-+ cz = ky, 

(5) a,% + boy + Coz = Keo, 

ast + boy + caz = kg. 
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The solution of this system may be effected by the method of 
elimination studied in Sec. 4.7 and is therefore left as an exercise to 
the student. 

By using determinants, we may write this solution in the form 

kan bye, Gree, Qyaibe ak, 

Ky by Cy Gy Ky C5 Aen Os iks 

(6) cape ke MDsurGs te at Ke Cs ee Gs bs Ks 

where Ag, the determinant of the system (5), is given by 

a, by Gy 

Neel a 058 Cs ie 0: 

a, bs Cs 

By evaluating these determinants, the student should show that the 
determinant solution (6) is precisely the same as that obtained by the 
method of elimination. We also see here the motivation for the definition 
of A, as given at the beginning of this section. 

It should be observed that the determinant solution (6) is analogous to 
the determinant solution (3) of the system (2) of two linear equations 

studied in Sec. 15.3. This solution is, of course, another example of 

Cramer’s rule. 

Example 4. Using determinants only, solve the system 

3a + 2y —z = 3, 

4x — y — 3z2 = 0,7 

“2 — 2y — 3z = 1. 

SOLUTION. The actual evaluation of all the determinants involved is left 

as an exercise to the student. 

The determinant A of the system is 

er G2) Sa Cl GI ll 

SS eros) 
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Hence, by Cramer’s rule, the solution is 

Eloy e a 

hs ue) 

183 —16 
Ao —— aa a ee 

A 16 

ER bly di 

4 0se3 

See - 
apg WN iti tg’ 

3°23 

Aa 0 

pee ee | eee ees 
A 16 

EXERCISES. GROUP 55 

In each of Ex. 1-8, evaluate the given determinant. 

Dale cere) 4 3 3 

Le See 2 2a SP 2043 

Zp eh (han 3 sya ae: 
2a A De SPIES 

AL ONAD OS ie Sas ides 6 TSI 

i Pll) Dondeal IS Oas 

2 iO ales eee EHO te) 

S06: el a5 ES Siete) 
1F 8. 

Ne is) 105 3718 

haa Pear hao Lae fen 

In each of Exs. 9-10, solve the given equation for . 

Pl Na: io 

9. |\6 « 3) =0. 10... |2, %@ 6) *=10, 

4 2 @ Lied at, 

In each of Exs. 11-15, solve the given system, using determinants only. 

ll, w+ 2y —2=3, 29 —y +2 =7, 2e@ +y — 4e = —1. 
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12. 2x + Ty — 42 = 4, x — 3y — 4z = 0, 2a +3y+2=9. 

13. 3a —y —22 = 4,2e +y + 4¢ =2, Tx —2y —2 = 4. 

14. 2a — 3y = 13, 2y +2 =1,% —2z2 = —1, 

15. 3a — 9y + 4z = 0, Sx + 2y — 8z = 0, Tx — 2y — 5z = 0. 

16. Let C,; and M;,; be the cofactor and minor, respectively, of the element a,; 
lyingin the ith row and jthcolumn ofa determinant. Show that C,; = (—1)*7M,,. 

17. Expand A, with respect to the elements of the third row and show that the 

result agrees with the expansion (2) of Sec. 15.4. 

18. Verify the theorem of Sec. 15.4 by expanding the determinant of order 2 

with respect to the elements of the first column. 

19. Solve Example 2 (Sec. 15.4) by using the first row as an operating row. 

20. By the method of elimination, find the solution of the system (5) of 3 linear 

equations given in Sec. 15.4. 

21. By evaluating the determinants in the solution (6) of the system (5) in 

Sec. 15.4, show that the solution is precisely the same as that obtained in Ex. 20. 

22. By evaluating all of the determinants involved, check the solution of 
Example 4 of Sec. 15.4. 

In each of Exs. 23-29, verify the specified property for the general determinant 

Ag of order 3 as given by relation (1) of Sec. 15.4. 

23. Property 1 (Sec. 15.3). 24. Property 2 (Sec. 15.3). 

25. Property 3 (Sec. 15.3). 

26. Property 4 (Sec. 15.3). Use Property 3 (Sec. 15.3). 

27. Property 4 (Sec. 15.3). Use Properties 7 and 2 (Sec. 15.3). 

28. Property 5 (Sec. 15.3). 

29. Property 7 (Sec. 15.3) by showing that 

a,+kb, by cy Gi 70, 7c; 

ag + kb, bs Cg => a2 bs Co O 

a, + kbs bz ¢3 i 1 Ge 

ata’ bb XY Oe dy 8h Oe Dy Gy 

30. Show that ag + ay bs Co = ag by Co + ay bs Co é 

dz +a; bz Cg ge Da Cs a Ix Gy 

31. Show that 

: te) ik, G oy iy & Gn” ly & 
ata +Qy i AS a OF XY 1 i, 1 1 

ag + Ay, + ay” bs Co = ag bs Co + a,’ by Co + ay” bs Co e 

Ww 

a3 +43 +43” bs Cs dz bg C3 asi bg C3 a3) D3, 

32. It is shown in analytic geometry that the equation of the straight line 

passing through the two given distinct points Py(x,4;) and P,(%,, y2) may be 
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written in the form 
fe AI 

x, y, 1) =0. 

ty Yg | 

Verify this result by showing (1) that the coordinates of each of the points P, and 
P, satisfy the equation and (2) that the expansion of the determinant is linear in 

the variables x and y. 

In each of Exs. 33-34, using the result of Ex. 32, find the equation of the 
straight line through the two given points. 

33.42, 0), (0,c==1): 34. _G, 1), (—2, —1). . 

35. It is shown in analytic geometry that the area K of the triangle having the 
vertices (%1, 1), (Wa, Ya), (%3, Y3) IS given by 

% YY, I 

K = }/ 2, Jools 

%, Y3 | 

where the absolute value of the determinant is to be taken. Hence, find the area 

of the triangle whose vertices are (—1, 1), G, 4), (6, —1). 

36. Using the result of Ex. 35, show that a necessary and sufficient condition 
that three distinct points with coordinates (#1, ¥1), (2, Ys), (3, ys) be collinear is 

that 

ty Y | 

37. Show that |x y 2] =(« —y)\(y —2\(z —2). 

a2 y2 22 

1 1 1 

38. Show that x y Zz =(0). 

Yre 2+% «+y 

L—Y —z Da: 2a 

39. Show that 2y Y—-uU—zZ 2y =(« +y +2). 

2z 2z J Vig > Y) 

40. If w is one of the complex cube roots of unity, evaluate 

th Yay 1} 
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15.5. DETERMINANTS OF ANY ORDER 

We shall now study determinants of any order and show that they have 
the same properties previously stated and verified for determinants of 
orders 2 and 3. For this purpose we shall first formulate a definition for a 
determinant of any order n which will include determinants of orders 2 and 
3 as special cases. 

Specifically, let us first consider the determinant of order 3: 

bee Dire Fes 

which was previously defined (Sec. 15.4) by the expansion 

(1) A3 = ayb9c3 — ayb3cy — agbyC3 + agb,Cy + agb3cy — Agcy. 

Each term in the expansion is the product of three letters which we shall 
always write in alphabetical order; this is known as their natural order. 
The terms therefore differ from each other only in the order of the sub- 
scripts 1, 2, 3, which may be permuted in 3! = 6 different orders (Corollary, 
Theorem 2, Sec. 13.3). The subscripts in the first term of the expansion are 

1, 2, 3, arranged in the order of their magnitude; this is called their 
normal order. But whenever a larger subscript precedes a smaller one, 

they are said to form an inversion, Thus, in the term a3b,c., with the 

subscripts in the order 312, there are two inversions: 3 preceding 1 and 3 
preceding 2. For the term a3b,c,, with the subscripts in the order 321, 

there are three inversions: 3 preceding 2, 3 preceding 1, and 2 preceding 1. 

The first term a,b,c3, whose elements lie along the principal diagonal, has 

no inversions. 
With this understanding of an inversion, we are now ready to give a 

complete definition of a determinant of any order as follows: 

Definition. A determinant of order n, where n is any positive integer, is 

a square array of n? quantities called e/ements arranged in n columns and 

n rows. It represents the algebraic sum of all possible different products, 

each of n different elements, which can be formed by taking one element 

and only one element from each column and from each row. A product is 

preceded by a plus or minus sign depending on whether it presents an even 

or an odd number of inversions. The single product lying along the 

principal diagonal and presenting no inversions is preceded by a plus sign; 

it is called the leading term. 



338 Determinants Ch. 15 

NoTES. 1. It should be observed that the sign preceding a term due to its 

inversions is independent of the sign of the term due to its factors. Thus, if a 

term presenting an even number of inversions has as its factors the elements 
3, —4, and 2, the term itself is equal to +(3) (—4) (2) = —24. 

2. The student may now easily verify that the definitions of determinants of 
orders 2 and 3, as given by relation (1) of Sec. 15.3 and relation (2) of Sec. 15.4, 

respectively, are in accordance with the complete definition of a determinant of 
any order as given above. 

We will first establish the following important theorem on inversions. 

Theorem 1. Jf any two subscripts are interchanged in any term of the 
expansion of a determinant, the number of inversions is changed by an odd 

number, and the sign of the term is changed. 

PROOF. First consider that we interchange two adjacent subscripts. 
Then the number of inversions is either increased by | or decreased by 1, 
an odd number. Hence, if the original number of inversions is even (a 
positive term), the interchange produces an odd number of inversions and 

a negative term, that is, a change in sign. Similarly, if the original number 

of inversions is odd (a negative term), the interchange produces an even 
number of inversions and a positive term, again a change in sign. 

Next, consider that we interchange two subscripts which are not 

adjacent but have k numbers between them. To bring the first subscript 
into the position of the second requires k + 1 successive interchanges with 
adjacent numbers, and this must be followed by k additional successive 
interchanges with adjacent subscripts to bring the second subscript into the 

original position of the first, a total of 2k + 1 interchanges, an odd number. 
But from above, each interchange with an adjacent subscript changes the 

number of inversions by 1 or —1 and causes a change in sign. Hence, 
2k + | interchanges changes the number of inversions by an odd number, 
and the sign of the term is changed. 

We will now develop some of the properties of a determinant of any 

order 2 which, by means of the n letters a, b, c,--- , /, we write in the form 

Gy Dy Cee eee 

age DT CNG earls 

(2) A, = 

ay b, Cn aaa ip 

where the letter denotes the column and the subscript the row in which 
each element lies. 
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The leading term in the expansion of A, is the productva,bscs**l,. 
In accordance with the definition of A,,, all of the terms of its expansion 
may be obtained from the leading term by permuting the n subscripts 
eee os wi DIS may be done in n! different ways; hence there are n! 
different terms in the expansion. For n > 2, n! is an even number. 
Now consider any two subscripts. Among the 7! different permutations 

of the subscripts, the first subscript precedes the second as many times as 
the second precedes the first. But by Theorem 1, the interchange of two 
subscripts changes the sign of the term. Accordingly, half of the n! terms 
are preceded by a positive sign and half by a negative sign. We record 
these results as 

Theorem 2. There are n! different terms in the expansion of a deter- 

minant of order n; half of these are preceded by a positive sign and half by a 
negative sign. 

The properties of a determinant described and illustrated for a deter- 
minant of order 2 will now be established as theorems for determinants of 
any order. The student will find it helpful to fix his ideas by illustrating 

each step in a proof by means of Ag, the general determinant of order 3. 

Theorem 3. /f the corresponding rows and columns of a determinant are 

interchanged, the value of the determinant remains unchanged. 

PROOF. Let the given determinant of order n be represented by A, as in 

(2) above. Interchanging the corresponding rows and columns of A,, we 

obtain the determinant 

ay a, ay 

by bs b,, 

/ Due = Cie Co Gy 

L Ip Ns 

whose leading term a,b,c,---/, is the same as the leading term OLAS 

In A,’, the letters denote the rows and the subscripts the columns, the 

converse of their roles in A,. Hence, by keeping the subscripts of 

a,b.c3°--/,, in their normal order and permuting the # lettersert n! 

different ways, we obtain every one of the terms in the expansion of A,,. 

Furthermore, identical terms in both determinants have the same signs by 

considering inversions among the letters and not the subscripts in A,,’. 

Hence A,’ = A,,, and the theorem is established. 
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As an immediate consequence of this theorem we have the important 

Corollary. Any theorem on determinants which is true for its rows is 

also valid for its columns. 

NOTE 3. In operating with determinants, the student will note a definite pattern 

of symmetry between rows and columns. 

Theorem 4. /f every element of any row (or column) is zero, the value of 

the determinant is zero. 

PROOF. The theorem follows immediately from the expansion of the 
determinant. For, each term in the expansion of A,, must contain a factor 
which is an element from the row of zeros. Hence each term is zero and 

A, = 0. 

Theorem 5. Jf two rows (or columns) of a determinant are interchanged, 

the value of the determinant is changed in sign but not numerically. 

PROOF. The interchange of two rows results in the interchange of two 
subscripts in each term of the expansion of the determinant. But by 
Theorem |, the sign of each term is then changed. Hence the determinant 
is changed in sign without altering its numerical value. 

Theorem 6. Jf the corresponding elements of two rows (or columns) of a 
determinant are equal, the value of the determinant is zero. 

proor. Let A,, have two identical rows. If these two rows are inter- 

changed, A,, changes in value to —A,, by Theorem 5. But the interchange 
of two identical rows leaves the determinant unaltered. Hence, A, = —A,, 
from which 2A, = 0 and A; = 0. 

Theorem 7. /f each element of any row (or column) of a determinant is 
multiplied by the same number k, the new determinant has a value equal to k 
times that of the original determinant. 

PROOF. Let the original and new determinants be denoted by A,, and 
A,’, respectively. Since each term in the expansion of a determinant 

contains one element and only one element from each row, each term in the 

expansion of A,,’ is k times the corresponding term of A,. Hence A,’ = 
ae 

Corollary. If all the elements of any row (or column) have a common 
factor k, then k is a factor of the determinant. This common factor k may 
then be removed from each element and placed as a multiplier in front of the 
resulting determinant. 
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Theorem 8. /f each element of some row (or column) of a determinant is 
the sum of two quantities, the determinant may be written as the sum of two 
determinants, that is, 

Gag OP Mes aE CP byes dy Gage be ga = 01; 

ag+a, by l, a, by l, Gs =D; I, 

an! ali aid eee ee re ah ee ited ee gt mee 

ay 3 a, b, od lp a, b,, I, an b,, L, 

PROOF. Let the three determinants, taken in order, be designated by 

A, A,,, and A,,’, respectively. Then we are to show that 

A= AEA ®, 

In the relation to be established, we have indicated the first column as 

having each of its elements the sum of two quantities. The proof for any 
other column (or row) proceeds in exactly the same way. 

Now in accordance with the definition of a determinant, the expansion 
of A may be written in the form 

(2-1 o; JA, + + G5 )A, 4 4 GG, + 4, JA, 

SAG Ane CoA tet G,A,) + (6, Area, As + i a A), 

where A,, A,,--:, A, are expressions containing no elements from the 

first column. 

But, by the definition of a determinant and the significance of A, Ag,°°-, 

A,,, it follows that 

rs = a,A, — aA, — Ve + aZA;, 

and eG Ay OA, ee 0, Aa, 

whence A = A,, + A,,’, as was to be shown. 

Corollary. Jf each element of some row (or column) of a determinant is 
the sum of three (or more) quantities, this determinant may be written as the 

sum of three (or more) determinants. 

We now establish a theorem which is very useful in evaluating deter- 

minants. 

Theorem 9. If each element of any row (or column) of a determinant is 

multiplied by the same number k and added to the corresponding element of 

another row (or column), the value of the determinant remains unchanged. 
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pRroor. For convenience, and to fix our ideas, we will establish a specific 

example of the stated theorem. The proof for any other column (or row) 

is precisely the same. Hence, we will show that 

Gyre kU 0,8 Ge oe ay GAC Cea ae wey 

Ao +. kb, bs Co bE ag b, Co Ik 

Get kos bat G, bi ie Ws eae, Ls 

dg + kb, by l an 1m l, kb, be i 

7 Rig, ee ey. 5, | top ae 3 ONG ALES eh See 

a, +kb, 6, Be ated, Ix kb SB be fe 

By Theorem 7, Corollary, 

a, by ly b, by ly 

hee ees +k’ eee 

an b, Le b, b, is 

By Theorem 6, 

a, 0d, L, 

Goes ls 

een es is 

We will now establish an important theorem which was stated without 
proof in Sec. 15.4 and was then used for evaluating determinants. Before 
studying the proof of this theorem, the student should reread the definitions 
of the terms minor and cofactor and the verification of this theorem for Ag, 
as given in Sec. 15.4. 

Theorem 10. The value of any determinant of order n is equal to the sum 
of n products each of which is formed by multiplying each element of any row 
(or column) by its corresponding cofactor. 
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PROOF. We will establish the theorem by considering the expansion of 
the determinant 

GO Cee er] 

A, =| 4 Ds ees le 

a, b,, Cy is 

with respect to the elements of the first row. The proof is the same for any 
other row (or column). 

Accordingly, we are to show that 

(3) A, = @,A; + 5B, + C, + +++ + GL, 

where A,, By, Cj,--+,L, are the respective cofactors of the elements 
a, D;; Ci; a > be 

The proof consists of two steps in which it is shown that (1) the terms in 
the expansion (3) include all the n! products given by the definition of A,, 

and that (2) each of these products has the proper sign. 

(1) The cofactor A, is a determinant of order m — | and the terms of its 

expansion consist of (x — 1)! products, each of which contains no element 

from the first row and first column. Hence a,A, consists of (n — 1)! 

products, each of which contains one element and only one from each 

column and from each row, including the first row and first column. 

Similarly, 5,;B, consists of (n — 1)! products, each of which contains one 

element and only one from each column and from each row, including the 
first row and second column. Continuing this way, we see that for the n 
terms of (3) we have a total of n(n — 1)! =n! products, each of which 

contains one element and only one element from each column and from 

each row of A,. This is in accordance with the general definition of a 

determinant. 
(2) The signs of the terms of the cofactor A, are in accordance with the 

definition of A, and are the same for the expansion of a,A,, for the factor a, 

does not change the number of inversions. Note also that for a,, the 

element in the first row and first column, the sum of the number of the 

row and the number of the column is 1 + 1 = 2, an even number. 

In general, consider an element of A,, in the ith row and jth column. 

This element can be brought into the position occupied by the element a, 

by i — I successive interchanges of adjacent rows and j — | successive 

interchanges of adjacent columns, a total number of i + j — 2 successive 

interchanges. By Theorem 1, each such interchange changes the sign of a 

term once. Hence if i+ j—2 is even, i+/ is even, and the term is 
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preceded by a plus sign; if i+ j — 2 is odd, i + jis odd, and the term is 

preceded by a minus sign. 
This completes the proof. 

Corollary. If, in the expansion of a determinant with respect to the 
elements of any row (or column), the elements of this row (or column) are 

replaced by the corresponding elements of any other row (or column), the 

resulting expression is equal to zero. 

This follows from the fact that the resulting expression is then the ex- 
pansion of a determinant with two identical rows (or columns) and hence, 

by Theorem 6, is equal to zero. : 

Thus, in the expansion of A,, as given by (3) above, if we replace the 
elements of the first row by the elements of the second row, we have 

a, be Cy ly 

ERE IN fe 

NOTE 4. In connection with the proof in step (2) of Theorem 10, the student 

should note Ex. 16 of Group 55, Sec. 15.4. 

With the completion of the proofs of Theorems 9 and 10, we have 
justified the procedure for evaluating any determinant, as given in Sec. 
15.4. 

EXERCISES. GROUP 56 

1. Show that the expansion of a determinant of order 2, as given by relation 

(1) of Sec. 15.3, is in accordance with the general definition of Sec. 15.5 for a 

determinant of any order. 

2. Show that the expansion of a determinant of order 3, as given by relation 
(2) of Sec. 15.4, is in accordance with the general definition of Sec. 15.5 for a 

determinant of any order. 

3. Verify Theorem 2 (Sec. 15.5) for determinants of orders 2 and 3. 

4. Establish the corollary to Theorem 7 (Sec. 15.5). 

5. Establish the corollary to Theorem 8 (Sec. 15.5). 

6. If the corresponding elements of two rows (or columns) of a determinant 
are proportional, show that the value of the determinant is zero. 

7. Establish Theorem 4 by means of Theorems 9 and 6 (Sec. 15.5). 
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8. Show t ow that eo 

a, b, 0 O 
= iH oO. ee ae 192034 

ay by Cy ay 

In each of Exs. 9-17, evaluate the given determinant. 

ah wy caver leg 

pie. Oh: 10.9) al 7 |e 11.|/@ 1 2 

45 7 5 ae: y 2 1 
jae bee Saal 1p20 20S 0 

Bea 5S 4 2.2% 010 
ORS is 13. 

oo Tipe ee SON a0 

6 5 6 3 Fo SDA 

Dest 73 ES i) 

(MESO =27 Que 1151 
14. 15, 

PCE re) Ae 3 0 a2 

104. 13 1 dat Digit 
ge Ms HPS Ay {eae 3 ety? 75 

Gare et 2 Be Ose ate 

fe71e0 14 2) 11 2), 1702 4a 00E6 

Nee a hgh ae abs 

6a 0n828 3 a1 De TW 

In each of Exs. 18-19, verify the given relation without actually expanding the 

determinants. 

Bee 93 By py fl 8} By ee ey 38) 

NS aS Oh Sh By vs) Sh 2ie 9) a) 

18. + - ; 

Wf WN Bp if Aa 7 tk S&S 2B 

5 O-6 i a 0) 18h al 5 © 2 i 

Dell ee |. 2ekltel eee 

3 sy 2B io ay Be sy 10) 

19. ~ = 0. 
2 SF lee 4 i 2 ae 

Se eS ge Be Ih AB} 
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20. Show that « + y + 2 is a factor of the determinant 

co Up 

(A SON 6 

tf ae ee 

21. It is shown in analytic geometry that the equation of the circle passing 

through the three given noncollinear points P,(1, 1), Po(%2, Y2), and P(x3, Y3) 

may be written in the form 

wae ge ee rye 

opty? % yy 1 

Uy + Yo” %y Yo | 

ty + Ys" Xz Ys | 

Verify the fact that the coordinates of each of the points P,, P,, and P; satisfy this 

equation. 

22. By means of Ex. 21, find the equation of the circle passing through the 
three points (0, 0), (3, 6), (7, 0). 

23. By means of Ex. 21, find the equation of the circle passing through the 

three points (2, —2), (—1, 4), (4, 6). 
24. By means of Ex. 21 show that the four points (—1, —1), (2, 8), (5, 7), (7, 3) 

lie on a circle. Such points are said to be concyclic. 

25. It is shown in solid analytic geometry that the equation of the plane 
passing through the three given noncollinear points P4(%,, 41, 21), Po(%2, Y2,22), 

and P3(%3, ¥3, 23) may be written in the form 

Dm O @ il 

1 Y% 1 

Wy 0h Gy 

% Y3 3 | 

Verify the fact that the coordinates of each of the points P;, P., and P; satisfy this 
equation. 

26. By means of Ex. 25, find the equation of the plane passing through the 
three points (6, 2, 0), (4, —1, 2), and (3, 4, —1). 

27. If no three of the four points (2, ¥1, 21), (@25 Yos 22)» (®3s Yas Za)> (Las Yas Z,) 

are collinear, show by means of Ex. 25 that if these points are coplanar then 

% 4% 4% | 

®. Yo % | 
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28. By means of Ex. 27, show that the four points (1,0, —4), (2, —1, 3), 
(—2, 3, 5), and (—1, 2, 4) are coplanar. 

29. It is shown in solid analytic geometry that the volume V of a tetrahedron 
whose vertices are P,(%, 1,2), Po(%2, Yo, 20), P5(Xs, Y3, 23), aNd Py(24, Yq, 24) is 
given by the formula 

% HY % 1 

ly Yo 2 1 

ZI 

Sn Vin ey il 

where the absolute value of the determinant is to be taken. Use this result to find 

the volume of a tetrahedron whose vertices are (—4, 6, 3), (8, —3, 5), (4,0, —1), 

and (5, 3, 9). 

30. Show that if the elements of a determinant A are polynomials in x, and if 

A = 0 when x =r, then x — ris a factor of the expansion of A, 

In each of Exs. 31-33, factor the given determinant. 

l @ A é 
il Gi @& il @ @ 

il » G& be 
Sal die peebA4 Bw, il Wd EN 33). 

l @ @ €@ 
il @ € il € @ 

il @ @F FP 

a ye 

34. Show that|}1 y y? —2z| =0. 

yt 2 xy xz 

35. Show that xy xu + 27 Ye ze Aye 

“LZ Ye x + y? 

15.6. SYSTEMS OF LINEAR EQUATIONS 

At this point the student will find it helpful to reread Sec. 4.7 wherein we 

discussed a system of two or more linear equations in the same number of 

variables but without reference to determinants. In this section we shall 

study the solution and some of the properties of various systems of linear 

equations from the standpoint of determinants. We will start with the 

general case of Cramer’s rule, which was previously discussed for systems 

of 2 and 3 equations in Secs. 15.3 and 15.4, respectively. 
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Consider, therefore, the following system of n linear equations in n 

variables : 
axt+ by taqz+:::+hw=kh, 

(1) ayx + boy + coz@ +++ + Lw=kp, 

ane + by + ez +:°:+1,w= ky. 

In order to form the proper determinants from the coefficients, it is 
necessary to write the equations of a system as indicated in (1), that is, 

with the same variables under each other and the constant terms on the 
right-hand side. The equations are then said to be in order. If any variable 
is missing, its position is left vacant and its coefficient is taken as zero. 

The determinant whose elements are the coefficients in (1) is called the 

determinant of the system and is designated by A, that is, 

Pe ee hea B 

(2) A = | 4 acl F' 

Ch ates LS 

To determine the value of any variable in (1), we must eliminate all the 
other variables. This may be done very conveniently by means of cofactors. 
Let) Aina; A; be the: respective: cofactors) Of aj,as,- 2a nste 

elements of the first column of A. Multiplying both sides of each of the 
equations of the system (1) by A), Ag,°:*,A,, respectively, we obtain 

Q,A,yx + b,Ayy + cyAy2 + °°° + Aw = ky Aj, 

(3) AA o& + by Asy + CoA o% + S Weed + 1,Agw = kyAp, 

An A,X + byAny + CyAne +°°+ +1,4,w = k, Ay: 

Adding the equations of the system (3), member by member, we obtain 

(4) (ayAy + G2A4g +°°* +.4,A,)¢ + (B14, + bgdg 00° + b,,A,)y 

a a (1,4; ae I,Ay ne PME TUR 1,4,)W ae kA, hi kyA, a ReIES « Ky Ag: 

The coefficient of x in (4) is the expansion of A with respect to the 
elements of the first column (Theorem 10, Sec. 15.5). The coefficient of y is 

the coefficient of x with the elements of the first column replaced by the 
corresponding elements of the second column. Hence, by the corollary of 
Theorem 10, Sec. 15.5, the coefficient of y is equal to zero. Similarly, the 
coefficients of the remaining variables z,---, w in (4) are equal to zero. 
The right member of (4) is the expansion of A with the elements of its first 



Sec. 6 Systems of Linear Equations 349 

column replaced by the corresponding right members of the system (1). 
We will designate this last expansion by Aj, that is, 

See we 

A, =| ke be l, 

ky by lh 
Hence equation (4) may be written 

Ag = A, 

whence Ls 7 , provided that A + 0. 

Similarly, we may solve for the remaining variables. Thus, let B,, 
B,,-°++, B, be the respective cofactors of b,, bs, : ++, b,, the elements in the 

second column of A. If we multiply both sides of each of the equations of 

the system (1) by B,, By,---, B,, respectively, add the resulting equations 
member by member, and apply Theorem 10 of Sec. 15.5 and its Corollary, 
we obtain 

Ay = A, 

where A, is the determinant obtained from A by replacing the elements of 
its second column by the corresponding right members of the system (1). 

Hence, i © , provided that A + 0. 

A A 
Similarly, gin gy = — NO, imilarly nN a ria 

Conversely, we may show by actual substitution that this solution 

satisfies each of the equations of the system (1). 

We state these results as 

Theorem 11. (Cramer’s Rule). For the system of n linear equations inn 

variables, 

an + by + ¢2+°-* + hw = ky, 

ayu + bey + cg? + °° 4+ Lw=ko, 

a,~t by t+ee+-*:tlw=k,, 

let A be the determinant of the system and let A;, i= 1,2,°-*,n, be the 

determinant obtained from A by replacing the elements of its ith column by 

the corresponding right members of the system. 
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Then, if A 4 0, the system has the unique solution 

As an illustration of Theorem 11, we have 

Example 1. By Cramer’s rule, solve the system 

3a + 2y +2 —2w = 4, 

22 —y + 22 — Sw = 15, 

4u + 2y —w=l], 

ie — 22 — 4w = 1. 

ay w= —. 
A 

Ch. 15 

SOLUTION. The first step is to verify the fact that the given system is in 
order. 

The next step is to evaluate the determinant of the system. We find 

3 8 la 

2 hls t2b5 
A= _| = —65. 

Cy al 

34Q60..4 

Since A # 0, the given system has a unique solution which, by Cramer’s 
rule, is 

Cee) walt 9) 

15 fel decane 

(eae Oma 

ve Ar a0) 2 ee Coe 

A —65 —65 

3 4 ee 

NEP UTLS 

Aree) OI 

che Pek 130. 
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S AQ 4540 

2 lal oa 

1h. 2a 

Ra 00 el a4 195 
- Se S =] = 

A —65 —65 

cgay beg) 

Paes 7 15 

420 1 

en ee MOE nds | Pyt05" oes 
A —65 —65 

It is easily verified that this solution satisfies all the equations of the 
given system. 

It is evident from Cramer’s rule that if the determinant of the system 
A = 0, there cannot be a unique solution 

(5) ee al RY 0 any ance eee VV coal 

for division by zero is an excluded operation. Furthermore, if we write 
the solution (5) in the form 

Rey Ne Ny nA 

iv follows that 1 A = 0, then A; = 0774 =(1,°2,.- --, n= Hence, if atleast 

one of the determinants A, is different from zero, we have a contradiction, 

and there is no solution; the system is then said to be inconsistent. If, 

however, the determinants A,, A,,---, A,, are all equal to zero, it can be 

shown that there may be infinitely many solutions; the system is then said 
to be dependent. We have already discussed inconsistent and dependent 
systems for two equations in two variables in Sec. 4.7. But the complete 
discussion of the general system of n linear equations in n variables when 
A = 0 is beyond the scope of this book. However, for convenient refer- 
ence, we record the following facts: 

For a system of n linear equations inn variables, let A be the determinant 

of the system and let A;,i = 1,2,°**,n, be the determinant obtained from 

A by replacing the elements of the ith column by the corresponding right 

members of the system. 

1. If AAO, the system has a unique solution given by Cramer’s rule. 

The system is then said to be consistent. 
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2. If A= 0 and A, £0 for at least one i, the system has no solution and 

is said to be inconsistent. 

3. If A=0 and A; =0 for all values of i, the system has either no 

solution and is inconsistent or else infinitely many solutions and is said to be 

dependent. 

In the linear system (1) if at least one constant term is different from 

zero, the system is said to be nonhomogeneous. But if all the constant 

terms (the k’s) are zero, the system is said to be homogeneous and takes the 

form 
axt+by+---+hw=0, 

asx + boy +-->+ lw=0, 

(6) 

a,x + by +-::+1,w=0. 

It is clear that the system (6) is satisfied if each variable has the value 
zero, and this is true whether the determinant A of the system is zero or not. 
Since a homogeneous system always has a zero solution, it is called the 
trivial solution. If A 40, a homogeneous system has the trivial solution 
as its only solution by Cramer’s rule. Hence, if a homogeneous system is 

to have solutions other than the trivial solution, A cannot be different 

from zero. As a matter of fact, the following theorem is established in 
advanced treatises. 

Theorem 12. A homogeneous linear system of n equations in n variables 
has solutions other than the trivial solution of zeros if and only if the deter- 
minant of the system is equal to zero. 

Example 2. Solve the homogeneous system 

2x + 3y —z=0, 

x—y— 3z=0, 

x+3y+2z2=0. 

SOLUTION. The determinant of the given system is readily found to be 
zero so that there are solutions other than the trivial solution. To obtain 
such solutions we proceed as follows: 

We attempt, if possible, to solve two of the equations for two of the 
variables in terms of the third variable. Thus, rewriting the first two 
equations in the form 

20 -+- 3y-= 2, 

%—y = 32, 
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we find that we may solve for x and y in terms of z, for the determinant of 
this system 

ag i) 

le 2 

We thus obtain « = 22, y = —z. These values of x and y satisfy the third 
equation identically, for 22 — 3z + z = 0 for all values of z. 

Hence we may obtain as many solutions as we please by assigning 
arbitrary values to z and computing the corresponding values of x and y. 
Thus, 

= 540. 

FPor2= 1, © =2z2=2 and y =—z = —1. 

For z= 2, x = 4 and y = —2, and so on. 

Evidently all nonzero solutions for x, y, and z, respectively, are in the ratio 
peel eal 

Example 3. Solve the homogeneous system 

x—y+2z=0, 

2x — 2y + 44 =0, 

3x — 3y + 62 = 0. 

SOLUTION. The determinant of the given system is zero. If we now 
attempt to obtain nontrivial solutions as in the previous example, we 
encounter a difficulty because the minors of all the elements of the deter- 

minant of the system are also zero. We observe, however, that the three 

equations are equivalent, for the second and third equations may be 
obtained from the first by multiplying, respectively, by 2 and 3. Hence, if 
we solve the first equation for x in terms of y and z, we find 

x=y — 22, 

which we may use as a formula for obtaining values of « corresponding to 

arbitrarily chosen values for y and z. Thus, 

Fory=1 andz=1, 7=-1. 

Bory )2.andez =, 7 =.0)-and soon, 

Up to this point, the linear systems discussed had as many equations as 

variables. If the number of equations and the number of variables differ, 

the theory becomes involved and the complete treatment requires advanced 

study. However, there are several situations we can discuss. 

First, we will consider a system where the number of equations is less 

than the number of variables; such a system is said to be defective. As a 

rule, a defective system has infinitely manysolutions. The simplest example 
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of such a system is a single equation in two variables. Thus, x + 2y = 6 

has infinitely many solutions obtained by assigning arbitrary values to 

either variable and then computing the corresponding values of the other 

variable. 
In general, for a defective system of n equations in m variables, where 

n <m, we may be able to solve for n of these variables in terms of the 
remaining m — n variables. Then by assigning arbitrary values to these 

m — n variables, we can obtain the corresponding values of the other n 
variables. This process is illustrated in 

Example 4. Find solutions of the defective system 

x—2€y+2z2=1, 

etyt+ta&=1. 

SOLUTION. Here it is possible to solve for x and y in terms of z. 

We find 
x= 1 — 32, y= 2%, 

Hence, by assigning arbitrary values to z, we may obtain the corresponding 
values of x and y and obtain as many solutions as we desire. Thus, 

For 2=0, ¢=1l. . ¥=.0, 

2= 1, 7 = —2, y = —1, and so on. 

We next consider a system in which the number of equations is more than 
the number of variables; such a system is said to be redundant. Say that 
we have a system of m equations in m variables, where n > m. It may be 
possible to solve m of these equations for the m variables. If this solution 
satisfies all of the remaining n — m equations, the given system is consistent, 
otherwise it is inconsistent. 

A redundant system of particular interest is one in which the number of 
equations exceeds the number of variables by one. We will illustrate this 
by the following system of three equations in two variables: 

ar + by = ky, 

a,x + boyy = ky, 

at + bey = ks. 

We wish to determine under what conditions this system is consistent, that 
is, has a common solution. The solution of the first two equations by 
Cramer’s rule is 

ky by 

ks by y = as ky 

A ? q A > ay by 

a, ky 
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This solution must satisfy the third equation, that is, we must have 

ky by aq ky 

k. eee dake —k, =0 
a, by a, by 

a, by dy by 

Clearing of fractions, we have 

ky b “Hey a, b as 1 1 b, 1 Al ~ ky 1 i es 

j ke de a, ky a, by 

Changing the signs of all the terms, we may write 

b, k a, k a, b ee cs 8 ha bs ie UI i: Te ace ie 0 

by ky a, ky ay Dp 

The left member is now seen to be the expansion of the following deter- 
minant with respect to the elements of the third row (Theorem 10, Sec. 
15): 

This determinant A, is called the e/iminant of the system. 

Hence, a necessary condition for the given system to be consistent is 
that A, = 0. This result may be extended to 7 equations inn — | variables 

as Stated in 

Theorem 13. A necessary condition that a redundant nonhomogeneous 

linear system of n equations in n — | variables be consistent is that the 

determinant of order n formed from the coefficients and the constant terms 

have the value zero. 

NOTE. The converse of Theorem 13 is not necessarily true; hence the condition 

is not sufficient. For example, in the system 

ete 

2% + 4y = 9, 

3a + 6y = 12. 

the eliminant is zero, but the system is not consistent. In fact, no two of the 

three equations are consistent. 
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Example 5. Find the value of k for which the following redundant 

system is consistent, and find the solution of the system: 

2ea+y+2= 

x—y— 2z 

3a —y+z 

e+t2y+z= 

I il ial eee? 

SOLUTION. For this system to be consistent, we must have, by Theorem 

13 

= Wo FF WN 

—_—! —I 

The expansion of this determinant gives us a value of 3 for k. Setting 
k equal to 3 in the given system and solving the first three equations, we 
find « = 1, y = —1, z = 2. This solution is readily found to satisfy the 

fourth equation. 

EXERCISES. GROUP 57 

1. Verify the values shown for all the determinants of Example 1 (Sec. 15.6) 

and check the solution. 

In each of Exs. 2-9, solve the given system by Cramer’s rule and check the 

solution by substitution. 

2.%+3y —z=0, 3% —4y+2=2, 2x +2y +2 = 13. 

NHN - W . 40 + 2y + 32 + w = 3, 

2¢ — 3y —w =2, 

34 — 2y +2 +2w =0, 

«+ 3z2 —5w = 1. 

8 «+ 3y+2z2+u—v 

2e — Sy —z —u +2v 

x+y +2 —2v 

3x — 3y + 2u + 40 

x+4y —z —2u 

260 +2y —2=2,."%—3y—22=2, 3m +4y +2 =7. 

. 3x —4y +72 =4, «+ 2y —5z =8, 2x —3y + 92 =2. 

.a+5y+4z2=1, 2x — Sy + 32 =—3, 2 + 9y + Sz = 2. 

7. «© +2y +2—-—2w = —2, 

3x —y —z+w =3, 

2u —y +22 — 4w = 1, 
4x — 3y —2z2 + w =3. 

9.x + 4y — 3z + 2u — 3v = 2, 

2a — Sz —3u + 2v = —2, 

3x +2y+7z2+u=6, 

x — 3y —2u + 3v = 1, 

2% — Sy + 32 —v =7. 
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In each of Exs. 10 and 11, show that the given system has no unique solution. 
10.0 x«+y+2+7w =4, Il. 3a +y—24+4w =5, 

3a + 8y —22 +w = —1, x+y + 32 + Sw =8, 
3x + Ty —z + 5w = 1], x — Sy — 1lz = —2, 
x+3y-—-z+w=3. x+3y +52+2w =9. 

12. If a homogeneous linear system of n equations in 7 variables has a solution 
T=%, Y= %,°*-,wW=a,, Show that it also has the solution v« = ka, 
Y = kag,++-,w = ka,, where k is an arbitrary constant. 

In each of Exs. 13 and 14, show that the given system has only a trivial solution 

of zeros. 

13. «+3y+2z2+w=d0, 14. 2x + 4y —z + 3w =0, 

2a —y +42 + 3w =0, x + 6y +22 —S5w =0, 

3x + Ty + 62 + 4w =0, 3x — 42 + 3w = 0, 

2¢@ + 3y + 7z + 5w =0. 4x —2y +32 +w =0. 

In each of Exs. 15 and 16, show that the given system has solutions other than 

the trivial solution, and find several such solutions. 

15. 2% + 2y + 32 —w =0, 16. x —2y +2z —w =0, 

x—y+2z2+w=d0, 3x + 2y + 42 + 2w =0, 

3x + 2y +2 —2w =0, x«+3y+2+2w =0, 

x+y —3z —2w =0. de —-y+tz+w=0. 

In each of Exs. 17 and 18, solve the given defective system for x, y, and z in 

terms of w and obtain several solutions. 

Aide xetyt+zt+w =3, 18. 2% +3y —z+w =2, 

x —2y +32 +2w = —4, ze+y —z+2w =4, 
2a —y —2z —2w =0. 3x —2y —42 +w =6. 

19. A group of 18 men, women, and boys earn $25 per hour. The men earn 

$2 per hour, the women $1.50 per hour, and the boys $1 per hour. Find the 

number of men, women, and boys. 

In each of Exs. 20 and 21, determine whether the given redundant system is 

consistent or inconsistent. If consistent, find the solution. 

20. 2% + 2y —z = —5, 21. 2e&+y—z=7, 

x—y+32=6, x—y—z=0, 

2x — 4y + 3z = 1, x+2y +z =8, 

xetyt+2=4. 3x — 2y — 2z = 3. 

22. Check all the details of Example 5 of Sec. 15.6: 

In each of Exs. 23 and 24, find the value of k for which the given redundant 

system is consistent, and find the solution of the system. 

23. 2a +y + 32 = 3, 24. x+y —3z2 =k, 

a eae) 32 + 3y +2 = 
x + 2y + 22 = 4k, 2a —y — 42 =4, 

ety tz =3. ee Sa he 

25. By actual substitution, show that the solution by Cramer’s rule (Theorem 

11) satisfies the first equation of the system (1) in Sec. 15.6. 
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Logarithms 

16.1. INTRODUCTION 

In this chapter we consider some of the properties and uses of the 
logarithmic function. Since this is a text book on algebra, the student may 
naturally inquire why we are including a nonalgebraic function (Sec. 3.6). 
There are several reasons. As we shall soon see, the concept of the loga- 

rithm arises in the course of generalizing the theory of exponents (Sec. 2.13). 
Also, logarithms are extremely useful in performing such various computa- 

tions as are often required in the solution of algebraic problems. Further- 
more, in the next chapter, we consider several specific applications of 
logarithms. 

16.2, THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

In our previous work we dealt with algebraic expressions involving 
terms of the type x”, where x is a variable called the base and n is a constant 
called the exponent. Now if we interchange the roles of the base and 
exponent, we obtain an expression which we may write in the form 5?, 
where 5, the base, is a constant and x, the exponent, is a variable. Such 
an expression is called an exponential function. 

In Sec. 2.13 we gave a meaning to b* for all rational values of x. Thus, 

by the laws of exponents, 23 = 2-2-2, 2-3 = 1/23, and 2% = 23. But 

if v is irrational, no meaning has been assigned to b*. For example, 2”? has 
not been previously defined. We now proceed to generalize the laws of 
exponents by giving a meaning to b* when 2 is irrational, and hence, for all 
real values of x. 

358 
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To fix our ideas, let the exponent x be V2, an irrational number approxi- 
mately equal to 1.41421 ---. Then (Sec. 10.5) we define V2 as the limit of 
the sequence of rational numbers 1, 1.4, 1.41, 1.414,---. For each of 
these values, b* takes on a corresponding value. It is shown in advanced 
treatises that if b > 0, this sequence of values of b* approaches a limit, and 
this limit is defined as the value of bY?. In general, if a is any real number, 

(1) lim b? = 5°, be 0: 

The relation (1) means that a small change in x causes only a small change 

in the value of b”; such a function is said to be continuous. Hence the 

graph of the exponential function 

(2) y=5", b>9, 

a is a smooth continuous curve, as shown 

in Fig. 43. In this graph, b>1. We 
shall see later that there are two particular 

values of the constant 6 which are of great (0, 1) 

importance, and both are greater than 
unity. The graph exhibits the following O 
characteristics of the exponential function 

Figure 43 
b® when b > 1: = 

(a) Since the graph lies entirely above the X-axis, b” is positive for every 

real value of x. 

(b) b” increases as x increases. As x increases without limit, 5” does 

likewise, and we write 

Linde = 00: 

(cy) ora 0,0 = |; tor” = 0, b* = 13 for” > 0, b* > I. 

(d) As x increases numerically without limit in the negative direction, 

b* approaches zero, and we write 

line 4 0; 

In addition, we note the following two facts, which are established by 

advanced methods: 

(1) If x is any real number, rational or irrational, and b > 0, the 

exponential function b” obeys all the laws of exponents (Sec. 2:13): 

(2) If b > 0, one and only one value of y > 0 corresponds to each real 

value of x in the relation y = b*. We then say that b® is a single-valued 

function of x. This fact is also illustrated by the graph in Fig. 43. 
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In relation (2), where y is expressed directly as a function of x, y may be 

obtained for particular rational values of b and x by algebraic operations. 

Thus, forb = 2andx = 3,y = b* = 2% = V23 = 2V2. Ifzisirrational, 
y may be approximated, as we have seen, by using algebraic operations 

with rational values approximating x. Now consider the converse problem 

of finding x when b and y are given. For example, let us study the problem 

of finding x for the relation Pe 

We can readily see in this case that # must lie between 2 and 3, for 2? = 4 
and 2° = 8. It is evident that the value of x must be obtained by an 

approximating process. To meet this situation, we consider the inverse of 
the exponential function (2) and write it in the form 

(3) «=log,y, b5b>0, 
which is read “‘a equals the logarithm of y to the base b.”’ Since the two 
equations (2) and (3) represent exactly the same relation, we see that a 

logarithm is an exponent ; in fact, we have the following 

Definition. The logarithm of a number to a given base is the exponent 
of the power to which the base must be raised in order to equal the number. 

In view of the equivalence of equations (2) and (3), the graph in Fig. 43 
also represents the logarithmic function defined by equation (3) whend > 1. 
Hence, for each point on the graph, the value of y represents a positive 
number and the corresponding value of x represents the logarithm of that 

number to the base b. Hence the characteristics of the exponential function 
may now be translated into the following corresponding properties of the 
logarithmic function: 

(a) Only positive numbers have real logarithms. The logarithms of 
negative numbers do not exist in the real number system; it is shown in 
advanced work that such logarithms are complex numbers. The logarithm 
of zero is undefined. 

(b) As a number y increases, its logarithm a also increases. As y 

increases without limit, so does x and we write 

lim log, y = "co. 

(c) Fory < 1, log,y <0; fory = 1, log, y = 0; fory > 1, log, y > 0. 

(d) As a number y approaches zero, its logarithm increases without 
limit in the negative direction, and we write 

lim log, Yi — a0: 
y>0 

Also, it is shown by advanced methods that if b > 0, the logarithmic 
function log, y is single valued and continuous for all positive values of y. 
This is also confirmed by the graph in Fig. 43. 
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Since it is customary to have x represent the independent variable and y 
the dependent variable in a functional relation, it is usual to interchange 
the roles of x and y as given in relation 
(3) and to write the logarithmic relation Y 
in the form 

(4) y=log,x, b>0, 
x 

where x now represents the numbers and 2 (1,0) 

y the corresponding logarithms. The 
graph of equation (4) is shown in Fig. 44 
and is the usual representation of the log- Figure 44 
arithmic function. Note that the graphs 

in Figs. 43 and 44 are identical in form; they differ only in their positions 
relative to the coordinate axes. 

NoTE. Theoretically any real number except 0 or | may be used as the base b of 
a system of logarithms. Consider the relation y = 5” and its equivalent form 

x = log, y. 

If b = 0, y = b* = 0 for all values of x except 0, in which case it is undefined. 

Also, if b = 1, y = b* = 1 for all values of x. Hence neither 0 nor 1 can serve as 

the base of a system of logarithms. 
If 5 is negative, y = b* may be negative or complex for certain values of x. 

The discussion of this case is beyond the scope of this book. 

If b lies between 0 and 1, y = b* decreases as x increases. But in the systems of 

logarithms in actual use, we have chosen y = 6” as a function which increases as 

x increases. 

Hence, for simplicity and for practical purposes, we will take the base of a 

system of logarithms as a positive number greater than unity. 

Example. In each of the following relations, find the value of the 

specified letter: 

(a) If « = log, 8, find z. 

(b) If log, 74 = 4, find 5. 

(c) If logs y = —2, find y. 

SOLUTION. In each case, we transform the given relation into its equiva- 

lent exponential form. 

(a) From x = log, 8, we have the exponential relation 2* = 8, whence 

ip Tt) 

(b) From log, 3, = 4, we have the exponential relation Oa es wllence 

i 

(c) From log, y = —2, we have the exponential relation 3-* = y, 

whence y = 3. 
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EXERCISES. GROUP 58 

In each of Exs. 1-6, translate the given relation into logarithmic form. 

1% 1 
1. 24 = 16. 2b ort, 3: (5) yi 

4, N =b*. 5. “Y =z, 6. u =v". 

In each of Exs. 7-12, translate the given relation into exponential form. 

7. logy) 100 = 2. 8. logs 81 = 4. 9. log, 0.1 = —1. 

10. log, a =. 11. logs 4 = 3. 12. logy, 1 = 0. 

In each of Exs. 13-16, evaluate the given logarithm. a 

13. logy) 1000. 14. log,, 0.001. 15. log; 625. 16. logy.» 0.008. 

17. If log, 0.01 = —2, find b. 18. If log, N = 0, find N. 

19. If log, 8 = 2, find 2. 20. If log, 9 = —2, find b. 

21. If log, N = 3, find N. 

22. Show that log, 1 = 0 and that log, b = 1. 

23. Show that log, b* = x and that b%* = , 

In each of Exs. 24-26, find the inverse of the given function. 

24,.y=3™. 25. y = 107-1. 26. y = logig= 

27. Show that the exponential function y = b® has the property that if x is 

given a sequence of values in arithmetic progression, the corresponding values of 
y are in geometric progression. 

28. Plot the graph of the exponential curve y = 2”. 

29. Plot the graph of the exponential curve y = ($)*. Compare the result with 
the graph obtained in Ex. 28. 

30. Plot the graph of the exponential curve y = 3~*. Contrast this graph with 
the graph in Fig. 43. 

31. List the characteristics of the graph obtained in Ex. 29 and contrast them 
with those obtained for the graph in Fig. 43. 

32. Plot the graph of the logarithmic curve y = log, x by using the equivalent 

exponential relation. 

33. Plot the graph of the logarithmic curve y = log, , x by using the equivalent 
exponential relation, and compare the result with that obtained in Ex. 32. 

34. List the characteristics of the logarithmic function whose graph is given in 

Fig. 44. 

35. List the characteristics of the graph obtained in Ex. 33 and contrast them 
with those obtained in Ex. 34. 
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16.3. FUNDAMENTAL PROPERTIES OF LOGARITHMS 

We have seen that a logarithm is an exponent. Hence, by translating the 
laws of exponents into logarithmic form, we obtain the laws of logarithms. 

We will now establish four fundamental theorems on logarithms which 
are the result, respectively, of the following four laws of exponents (Sec. 
2er3): 

(1) be Dt pe 
(2) PS p= 

(3) oo 
(4) "4/5? = BH”, 

In the theorems which follow we are concerned with three positive 
numbers M, N, and 6. We may therefore write 

(5) M =— Pb and N = b’, 

whence 

(6) x = log, M and y = log, N. 

Theorem 1. The logarithm of the product of two positive numbers is 

equal to the sum of the logarithms of those numbers, that is, 

log, MN = log, M + log, N. 

PROOF. From (5) and (1) we have 

MN = bt- bY = pty 

whence, from the definition of logarithm and (6), 

log, MN =x +y = log, M + log, N. 

This theorem may be readily extended to the product of three or more 

positive numbers. 

Theorem 2. The logarithm of the quotient of two positive numbers is 

equal to the logarithm of the dividend minus the logarithm of the divisor, that 

is, 

log, = log, M — log, N. 

PROOF. From (5) and (2) we have 

AE OS pen 
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whence, from the definition of logarithm and (6), 

log, =  — y = log, M — log, N. 

Theorem 3. The logarithm of the nth power of a positive number is equal 
to n times the logarithm of the number, that is, 

log, M” = nlog, M. 

PROOF. From (5) and (3) we have 

M” = (b*)” = b"* 

whence, from the definition of logarithm and (6), 

log, M” = nx = n log, M. 

Theorem 4. The logarithm of the real positive nth root of a positive 

number is equal to the logarithm of the number divided by n, that is, 

log, Mv" = Sahn M. 

PROOF. From (5) and (4) we have ; 

Mur = "4/h* = Balm 

whence, from the definition of logarithm and (6), 

Toon stare OE 
n n 

We list here, also, the following important properties of a logarithm, 
which are a direct consequence of the definition of a logarithm. 

(7) log, b = 1. 
(8) log, b” =n. 

(9) poe NV — N, 

The logarithm of a number depends upon the base. The logarithm of a 
positive number to any base a > 0 may be expressed in terms of logarithms 
to another base b > 0 by means of the following theorem. 

Theorem 5. The logarithm of a positive number N to the base a is equal 
to the logarithm of N to another base b divided by the logarithm of a to the 
base b, that is, 

loge. poe NY 
log, a 

PROOF. Let log, N = x 

so that IN SS ae. 
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Taking the logarithms of both sides to the base b, we have, by Theorem 3, 

log, N = x log, a 

og, N 
whence x= —— ,or 

log, a 

(10) ee ee 
log, a 

the required relation. 

If we set N = b in (10) we have, by (7), the following relation: 

1 
(11) log, b = ; 

log, a 

NOTES. |. The relation (10) of Theorem 5 for a change of base is useful when 

we wish to obtain the logarithm of any number to some base a and the available 

table of logarithms is to another base b. 

2. In relation (11), the number log, b is called the modulus of the system of 

logarithms to the base a with respect to the system of logarithms to the base 5. 

We shall see later that the results of Theorems | through 4 are extremely 

useful in performing arithmetical computations involving the operations 
of multiplication, division, involution, and evolution. But, for the present, 

we shall restrict their use to exponential and logarithmic expressions, as 
shown in the following examples. 

Example 1. Find the inverse of the function y = ——_—, hb > 0. 

SOLUTION. We are required to solve the equation 

bbe 

+o, #2 
for x in terms of y. 

Multiplying by 2b", we have 
2yb® = b* — 1. 

Rearranging terms, b — 2yb* —1 = 0. 

This last equation is quadratic in form (Sec. 5.6), for, if we let 2 = 6”, the 

equation may be written as 
22 — 2yz—1=0. 

Hence, solving for z or b” by the quadratic formula (Sec. 5.4), we have 

— 2y¥ Jay? +4 

- 7 ~ 
(12) oe =ytJ/y41. 
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Now Vy? + 1 > y, and since the exponential function b* is always positive 

(Sec. 16.2), we discard the minus sign in (12) and write 

be =yt+ A/ y2+ 1 

whence we have our required inverse, 

x = log, (y+ Vy? + 1). 
Example 2. Find the inverse of the function y = log, x — log, (1 + 2). 

SOLUTION. By Theorem 2, the given function may be written in the form 

Si YS So rie 

whence a = 
1+2 

and bY + bx = @. 

Then Dia lo") 

y 

and C= D : 
1 — db’ 

Example 3. Show that 

log, (Vx + 2 — Vx + 1) = —log, (Vx + 2 + Vz + 1). 

SOLUTION. Since we are to obtain a result involving Vx + 2 + Vx + 1, 
we introduce this expression as follows: 

as rs — Se 
rey ey area yg ey ee 

Jet2+/e+1 

ied Cave 0 1 

4 DeRarh Afri 2 eee 
1 

Hence, log, (Vx a 2- Vx oF 1) = OY rer OT aa 

Vae+ Vat 1 

By Theorem 2, = log, 1 — log, (/# + 2 + ./x + 1) 

By Property (8) for n = 0, —log, (Je +2+./x + 1). 

EXERCISES. GROUP 59 

1. Extend Theorem 1 (Sec. 16.3) to the product of three or more positive 
numbers. 

2. Show that the logarithm of the geometric mean of two positive numbers is 
equal to the arithmetic mean of their logarithms. 
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3. Obtain the result of Theorem 4 directly from Theorem 3 (Sec. 16.3). 

4. Obtain property (8) of Sec. 16.3 from Theorem 3 and property (7). 

5. Obtain property (7) of Sec. 16.3 from property (8). 

6. Obtain property (9) of Sec. 16.3 by the following method: Set 5%" = y 
and take the logarithms of both sides to the base b. 

7. If N, a, and 6 are positive numbers, show that log, N = log, N - log, a. 

8. Show that log, N-" = —n log, N. 

In each of Exs. 9-14, express the given logarithm in terms of simpler logarithms. 

xv? —1 Aer 
9. log, ee ri . 10. Usa aer . 

aa + 2)? Vez +1 
11 ORF ak 2s log, —3—- 

a + 1 a(x? — 5) 
13s C 14. of 

In each of Exs. 15-18, find the value of 2. 

15. log, x = log, 2 + 3 log, 2 — log, 4. 

16. log, x = $ log, 3 + log, 4 — $ log, 2. 

17. logig v = 2 logiy 3 + 3 logy) 2 — 2. 

18. logy) x = $ logy, 16 — 4 logy) 8 + 1. 

19. Simplify: (a) 51%; (b) b?!0%?. 

20. Simplify: (a) 10’2!0%108; (b) 10318102. 

In each of Exs. 21-30, find the inverse of the given function. 
CH 

21. y = be. 22.y=b*. 
1 b* —1 

L b* 3b [je 

Bp COE er 

x a 

27. y = log, 7° 28 y = 10g, | 

14V1—2 1+ V1 +2? 
29. y = log, aa 30. y = log, 3 

31. Show that} logy 7 = log, (3 + 2V2). 

32. Show that log, (Vz +3 + Vx + 2) = —log,(Vx +3 — Va +2). 

Va+x2+a Va +22—a 
33. Show that log, errant on on PlOlweeetgy as 

34. Show that log, (v + Ve? —1) = +log, (x + V x2 — 1). 

35. Show that log, (1 — V1 — 2%) = 2 log, — log, (1 + V1 — 2). 
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16.4. SYSTEMS OF LOGARITHMS 

We have previously seen that it is both theoretically and practically 
desirable that the base of a system of logarithms be positive and greater 
than unity. Two such bases are in common use, the number 10 and an 
irrational number usually denoted by e and approximately equal to 

pay ieee ieee 
The system of logarithms with the base 10 is called the common or 

Briggs’ system; it is generally used for ordinary arithmetical computations. 
The system of logarithms with the base e is called the natural or Napierian 
system; it is used almost exclusively in the calculus and advanced mathe- 

matics. 
Later we shall see that the common system of logarithms with the base 10 

has definite advantages in computations involving the numbers of our 
decimal system. But we are not now in a position to show the advantages 

of the base e; later, in the calculus, the student will readily see the conven- 

ience of natural logarithms whose base e is defined as the following limit: 

e = lim (+4) Sse 1e26 2 

The relation between common and natural logarithms may be obtained 
by means of Theorem 5 (Sec. 16.3), where it is shown that for any positive 
number WN and two different bases a and b, 

N= O8> N . 

log, a 

In this relation, let a = e and b = 10, so that 

log a 

(1) log, N =_ logio N 

logig € 
from which 

(2) logig N = logy) e: log, N. 

From a table of logarithms, we may find that 

whence its reciprocal 

I 1 
= —— = 23026. 

logiee 0.4343 

Hence, relations (1) and (2) may be written in the respective forms 

log, N = 2.3026 logy, N, 

logig N = 0.4343 log, N. 
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The number log), e = 0.4343 is called the modulus of common loga- 
rithms with respect to natural logarithms. Then by relation (11) and Note 2 
of Sec. 16.3, the reciprocal of logy, e or log, 10 = 2.3026 is called the 
modulus of natural logarithms with respect to common logarithms. 

Since we shall, in general, use only the bases 10 and e, we may for 
convenience omit these bases by adopting a simple convention. Thus, for 
the logarithm of a number N to the base 10, we shall write log N instead of 
logi) N. Also, for the logarithm of N to the base e, we shall write In N 
instead of log, N. The term In N is also read “natural log of N.’”? For 
example, relation (2) above may be written 

log N = loge: InN. 

16.5. EXPONENTIAL EQUATIONS 

An equation in which a variable appears as an exponent is called an 

exponential equation. Thus, 2**t = 8 and e” — e-* = 1 are examples of 
exponential equations. 

To effect the solution of an exponential equation, the equation should 
first be solved, if necessary, for the exponential function. The next step is 
to take logarithms of both members to an appropriate base. In this step 
we use the fact that if two expressions are equal, their logarithms are equal 
since, as we have seen (Sec. 16.2), the exponential function and its inverse, 

the logarithmic function, are single valued. The process is best explained 
by means of examples where it is important to remember that the exponen- 
tial function is always positive and that we are considering only real values. 

Example 1. Solve the equation 

e—e*=1. 

SOLUTION. Multiplying through by e*, we obtain 

Cr i ii Ce 

or e* —e*—_ 1 = 0. 

This equation is quadratic in form (Sec. 5.6) when we consider e” as the 

variable. Hence, solving for e” by the quadratic formula, we obtain 

, 14/144 14,5 
e= 5 5b be 

Since e” is always positive, we discard the minus sign and write 

a ESS 
— 

2 



370 Logarithms Ch. 16 

Taking logarithms to the base e, we obtain 

5 
oh ey loot 

‘9) 
a 

as the required solution. 

Example 2. Solve the equation 

e3” — Je” — 2e* —-3 = 0. 

SOLUTION. If we let y = e* in this equation, it takes the form 

(1) Ue pO =A ome aU 

a rational integral equation which may be solved by the methods of 
Chapter 11. Thus we find that y = 3 is a root of equation (1). Removing 
this root by synthetic division, we obtain the depressed equation 

ye ty +1 = 0, 
which has no real roots. 

Since e* must be positive, the only value for y is 3. Hence e” = 3 whence 
x = In 3 is the required solution. 

Example 3. Solve the following equation for f: 

E _kt 
[=—(l—e-£), i ) 

a 
SOLUTION. We first isolate the exponential functione ” . Thus, multi- 

plying by R, we have 

whence IR—E=-—Ee L 

and Cun 

Taking logarithms to the base e, we obtain 

whence t= — Bi In Fe = =). 
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16.6. LOGARITHMIC EQUATIONS 

An equation containing one or more logarithmic functions of one or 
more variables is called a logarithmic equation. Thus, 

log (« — 2) + log (w + 1) + 1 = log 40 

and 2Iny=3ln(@—1)4+ 2 

are examples of logarithmic equations. 
The solution of a logarithmic equation involving a single variable may 

be effected by first transforming it into a relation free of logarithms. In 
this process we use the fact that if the logarithms of two expressions are 
equal, the expressions themselves are equal. Also, it is very important to 

check all solutions since we do not consider those values of the variable 
which lead to the logarithms of negative quantities. We illustrate the 
procedure in the following example. 

Example 1. Solve the equation 

(1) log (x — 2) + log (x + 1) 4+ 1 = log 40. 

SOLUTION. Since the logarithms here are to the base 10, we replace 1 by 
log 10 so that we may write 

log (x — 2) + log (w + 1) + log 10 = log 40 

whence, by Theorem | (Sec. 16.3), we have 

log 10 (x — 2)(x + 1) = log 40. 

Hence, 10 (a — 2)(x + 1) = 40, 

w—x—-2=4, 

and v—x—-6=0. 

The solution of this last equation is readily found to give two values of «, 

namely, —2 and 3. But we must reject the solution —2 since substitution of 

this value in (1) results in the logarithms of negative numbers. But 3 is a 

valid solution since substitution in (1) gives us 

log 1 + log 4 + 1 = log 40 

whence 0 + log 4 + 1 = log 4 + log 10 

or log4+1=log4+l. 

We next consider a logarithmic equation involving more than one 

variable. 
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Example 2. Transform the following equation into one which is free 

of logarithms: 
2Iny =3In@—1)+2. 

SOLUTION. Since the given equation involves natural logarithms, we 

replace by In e* and obtain 

2Iny = 3 In (a — 1) + Ine’. 

Then by the properties of logarithms (Sec. 16.3), we have 

In y? = In (x — 1)8e” 

whence y? = (a — 1)%e*, 

the required equation. 

EXERCISES. GROUP 60 

1. If N is any positive number, show that In N = In 10: log N. 

1 
2. Show that loge = ni0 and that In 10 = 2.3026. 

3. Plot the curve y =e. A fair approximation of the shape of this curve 

may be obtained by taking e = 3. It is known as a probability curve (Sec. 14.6). 

4. Work out all the details of Example 2 of Sec. 16.5. 

In each of Exs. 5-20, solve the given equation. 

5, 3e+1 = 81. 6. 27-1 = 16. 7. Suite = 25, 
, DEVS cs dee OO). Byrn ce Be IOs. 7 ea eet 

Tet — ei 2 era Cae 1 le 

13. e® — 2e*° —3 = 0. 14. e” + 5e7° +6 =0. 

1S EP = WES = Tl SO. 16. 2e8” — 4e8* — 7 = 0. 

17. e®* — 3e? + 4e7 —4 = 0, 18. e” — 2e* —5 + 6e* = 0. 

19. 2e# + e8 + eo” 4 Ile™ —6 =0. 

20. 3e3” — 7e?* — 19e* — 5 + 4e-* = 0. 

21. In geometric progression (Sec. 10.3), we have the relation a, = ayr"—}, 

Solve this relation for ” in terms of ay, a,, and r. 

22. In geometric progression (Sec. 10.3), we have the relation s, = 

Solve this relation for n in terms of aj, s,, and r. 

a, ae" ia) 

l—r 

23. An electric circuit containing resistance and capacitance in series has an 
equation of the form Q = CE(1 — e~/©®), Solve this equation for ¢. 

24. In compound interest, the amount A and the principal P are connected by 

the relation A = P(1 +r)". Solve this relation for n in terms of A, P, and r. 

In each of Exs. 25—33, solve the given equation. 

25. log x — log (w — 2) = log 2. 26. log x + log (« — 1) = log 6. 

27. In12 —In(@ — 1) = In(@ —2). 
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28. log (w — 2) + log (a — 3) = log 2. 

29. log (@ + 2) + log(@ —1) =1. 30. log (2x — 3) = 1 — log (# — 2), 

31. log Gz + 1) =2 — log (x + 7). 

32. log (x + 1) + log(# — 2) =1 — log (x — 3). 

33. 2 log (x + 3) + log (w + 2) =2. 

In each of Exs. 34-40, transform the given equation into one which is free of 
logarithms. 

34. logx + logy = log 4. 35. In(@w + y) + In(@@ — y) =0. 

36. 2logy — x = loge. 3 Sina = Aino 1. 

38. log (@w + y) — logx — logy = log 3 — log (a? — ay + y?). 

39. 21n 2% — In(z + 2y) = In(z — 2y). 

40. In« +2Iny —x —y =z —3\Inz. 

16.7. TABLES OF LOGARITHMS 

Extensive tables of logarithms to both the base 10 and the base e have 

been constructed. These logarithms are computed by means of certain 

infinite series, and the determination is explained in the calculus. For our 
purposes here, we consider the manner of using a logarithmic table. 

In tables of natural logarithms, the actual logarithm is given for each 
number listed. But this is not true for tables of common logarithms where 
only part of the logarithm is given for each number listed. It becomes 
necessary, therefore, to explain the manner of using a table of common 
logarithms. A short table of common logarithms is given in Appendix II 
and is the table of reference in this and the following section. 

To fix our ideas, we first set up a skeleton table of com- 
mon logarithms as shown. This table exhibits the 

properties of logarithms previously discussed in Sec. 

x log x 

16.2. We note, for example, that the logarithms of all ane P 

the positive numbers exhaust the entire system of real 100 2 

numbers, thus excluding the logarithms of negative num- 10 1 

bers from the real number system. 1 0 

It is evident that integral powers of 10 are the only 0.1 = 

numbers whose common logarithms are integers. Every 0.01 | —2 

other number, therefore, has as its logarithm an integer 9.001 | —3 

plus or minus a fraction which is expressed as a \ 4 

decimal correct to a certain number of places. For 

example, the logarithm of 225 is 2.3522, correct to 4 decimal places. 

Since the logarithm of a number increases as the number increases, we 

can readily determine the successive integers between which the common 
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logarithm of a number lies. Thus, for a number between 1 and 10, the 

logarithm lies between 0 and 1; for a number between 10 and 100, it lies 
between | and 2, and so forth. Also, for a number between 0.1 and 1, the 

logarithm lies between 0 and —1; for a number between 0.1 and 0.01, it 

lies between —1 and —2. But the decimal portion of a logarithm cannot be 
determined by inspection, and it is precisely this information which a table 

of common logarithms provides. 
The logarithm of a number between 100 and 1000 lies between 2 and 3 

and is therefore equal to 2 plus a decimal. The logarithm of a number 
between 0.01 and 0.001 lies between —2 and —3; it is therefore either 

equal to —2 minus a decimal or else —3 plus a decimal. In this latter case 
we elect to take the logarithm as —3 plus a decimal. In general, for any 
number, the decimal portion of its logarithm is always taken as positive (or 
zero); this convention, as we shall see, has a definite advantage in extending 
the range of a table of common logarithms. 

Summarizing, a common logarithm consists of the sum of two parts, an 

integer and a positive (or zero) decimal fraction. The integer, which can be 
positive, negative, or zero, is called the characteristic and may be obtained 

by inspection as described in the rule below. The decimal fraction is called 
the mantissa and is obtained from a table of common logarithms. 

A rule for obtaining the characteristic of the logarithm of a number WN is as 
follows: 

(1) If N = 1, the characteristic of log N is 1 less than the number of 

digits in N to the left of the decimal point. 

(2) If N < 1 and is written in decimal form, the characteristic of log N 

is negative and is numerically | more than the number of zeros immediately 
to the right of the decimal point. 

As an illustration of this rule, we may note that the logarithms of the 
numbers 4232, 321.3, 85.72, 1.26, 0.843, 0.0436, and 0.002917 have the 
respective characteristics 3, 2, 1,0, —1, —2, and —3. 

We shall now show the advantage of having a non-negative mantissa. 
Let 5 be a positive number lying in the range 1 <b < 10. Then any 
positive number N may be written in the form 

(1) N = b- 10", 

where n is a positive or negative integer or zero. Thus, 

AVI), 3 IB) Se 10 

W267 —=s 126 xe Oe. 

0.0436 = 4.36 x 10-*, and so forth. 
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Note that the significant digits in b are precisely the same sequence of 
significant digits in N. 

From relation (1) we have 
(2) log N= logb +n. 

The characteristic of log b is zero; let its mantissa be represented by m so 
that log b = m. Then relation (2) may be written in the form 

(3) log N=n+™m, 

where v7 is the characteristic and m is the mantissa. Note that while n may 
vary in accordance with the magnitude of N, the mantissa m remains the 
Same as that in the logarithm of b. Because of the importance of this 
result we record it as 

Theorem 6. /f two positive numbers have the same sequence of significant 
digits but differ in magnitude, their respective logarithms have different 
characteristics but precisely the same mantissa. 

As an illustration of Theorem 6, we have 

log 1.42 = 0.1523, 

log 1420 = log (1.42) - 10? = (log 1.42) + 3 = 3.1523, 

log 0.142 = log (1.42) - 10-1 = (log 1.42) — 1 = 1.1523, 

log 0.00142 = log (1.42) - 10-3 = (log 1.42) — 3 = 3.1523. 

In the case of a logarithm whose characteristic is negative, we write the 
minus sign above the characteristic to show that it alone is negative, the 

mantissa as usual being positive. Thus, since 0-142 is less than unity, its 
logarithm is negative as we can see by writing 

1.1523 = —1 + 0.1523 = —0.8477. 

In order to avoid negative characteristics, it is common practice to add 10 
to the characteristic and then subtract 10 at the right of the mantissa. Thus, 
the logarithm 1.1523 is then written as 9.1523 — 10. We will, however, 
indicate a negative characteristic by writing the minus sign above it. 

Having discussed the determination of the characteristic, it remains to 
show how the mantissa is obtained from a table of logarithms, such as 

appears in Appendix II. If the given number has three or less significant 

digits, we locate the first two digits in the left column and the third digit at 

the top of the table. Our required mantissa is then the four digit entry 

located in the same row as the first two digits and in the same column as the 

third digit. Thus, for the number 142, the first two digits appear in the left 

column in the fifth row, and the third digit 2 at the top in the third column. 

The corresponding entry is found to be 1523; hence the mantissa of log 142 
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is 0.1523. As practice in the use of the table, the student should verify the 

following logarithms: log 34.5 = 1.5378, log 456 = 2.6590, log 2.03 = 

0.3075, log 0.075 = 2.8751. 
If the given number has four or more significant digits, the mantissa of 

its logarithm does not appear in the table but may be obtained approxi- 
mately by the method of /inear interpolation discussed in Sec. 11.10. The 
method here is based on the assumption that for a small change in a number, 
the change in its logarithm is proportional to the change in the number. 
The procedure is best explained by means of an example. 

Example 1. Find the logarithm of 1424. 

SOLUTION. The characteristic is, of course, 3. The mantissa lies between 

the mantissa of 1420 and the mantissa of 1430. From the table we have 

mantissa of 1430 = 0.1553, 

mantissa of 1420 = 0.1523. 

The difference between these two mantissas is 0.0030 and is called the 
tabular difference. The increase in the number from 1420 to 1430 is 10 
and causes an increase in the mantissa of 0.0030. Hence, by proportion, 
an increase in the number from 1420 to 1424 or 4 causes an increase in the 
mantissa of 4/10 x 0.0030 or 0.0012. Hence the required mantissa is 
0.1523 + 0.0012 = 0.1535, and log 1424 = 3.1535. 

For further practice, the student should verify the following logarithms: 
log 5026 = 3.7012, log 0.006241 = 3.7953, log 8.325 = 0.9204. 

We next consider the inverse problem, namely, given the logarithm of a 

number, to find the number, appropriately called the antilogarithm. If the 
mantissa of the given logarithm appears exactly in the table, the significant 
figures of the antilogarithm may be obtained immediately; otherwise 
interpolation is necessary. 

Example 2. Find the antilogarithm of (a) 1.9047; (b) 2.6144. 

SOLUTION. (a) The mantissa 0.9047 appears exactly in the table in the 
row corresponding to 80 in the left column and in the column headed by the 

third digit 3. Hence the significant digits are 803 and the required anti- 
logarithm is 80.3. 

(b) The mantissa 0.6144 does not appear exactly in the table but lies 
between the consecutive mantissas 0.6138 and 0.6149 corresponding, 
respectively, to 4110 and 4120. Hence we have 

Mantissa Number 

0.6149 4120 

0.6138 4110 
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The tabular difference between the mantissas is 0.0011 due to a change of 
10 in the number from 4110 to 4120. Hence, by proportion, an increase in 
the mantissa from 0.6138 to 0.6144 or 0.0006 causes an increase in the 
number of 6/11 x 10 = 5S very nearly. Therefore the required sequence of 
significant digits is 4110 + 5 = 4115 and the required antilogarithm is 
0.04115. 

_ For further practice, the student should verify the following: antilog of 
1.6791 = 0.4777; antilog of 2.8024 = 634.4. 

The use of a table of common logarithms enables us to obtain the 
logarithm of a number to any base by means of Theorem 5 (Sec. 16.3), 
where it is shown that 

(4) log, N = logy N- 
log, a 

The procedure is illustrated in 

Example 3. Find log, 0.86. 

SOLUTION. By relation (4) above, 

log 0.86 _ 1.9345 | —1 + 0.9345 
log, 0.86 = = = 

log 6 0.7782 0.7782 

SSL ae ayia) 
0.7782 

NoTE. More extensive tables of logarithms give the mantissas to five or more 
places and for a greater range of numbers than our own short table. The use of 

such tables results in greater accuracy and ease in computations. These tables 

usually give tabular differences and tables of proportional parts to facilitate 

interpolation. 

16.8. LOGARITHMIC COMPUTATION 

We now study the advantages of common logarithms in reducing the 

labor of arithmetical computations. In accordance with the properties of 

logarithms established in Sec. 16.3, it is possible to replace the operations 

of multiplication, division, involution, and evolution by the simpler 

operations of addition, subtraction, multiplication, and division, respec- 

tively. The procedure is best explained by means of examples. 

346 x 0.0269 

45.21 

SOLUTION. By Theorems | and 2 (Sec. 16.3), we may write 

(1) log x = log 346 + log 0.0269 — log 45.21. 

Example 1. Evaluate x = 
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For actual computation we arrange the work as shown below, inserting 

the values of the logarithms obtained from the table of common logarithms 

in Appendix II. 
log 346 = =. 2.5391 

+ log 0.0269 = 3.4298 
log 346 + log 0.0269 = 0.9689 

— log 45.21 = —1.6552 

loga.= 13137 

whence ees (Ae). 

where « is obtained as the antilogarithm of log z. 
In performing these operations the student must remember that the 

decimal portion or mantissa of a logarithm is always positive and that a 

negative characteristic has the minus sign written above it. 

Example 2. Evaluate (a) « = (0.162)>; (b) V/ —0.085. 

SOLUTION. (a) By Theorem 3 (Sec. 16.3), 

log = 5 log (0.162) = 51.2095). 

In performing this multiplication the student must be careful about the 
signs. The operation is actually as follows: 

5(1.2095) = 5(—1 + 0.2095) = —5 + 1.0475 = 4.0475. 

That is, log x = 4.0475 

whence «x = 0.0001116. 

(b) Here the required cube root is a negative number. But we proceed 
with this operation as if all quantities are positive and then attach the 

proper (negative) sign to the result. Thus, let y = ¥/0.085. Then by 
Theorem 4 (Sec. 16.3), 

log y = } log 0.085 = 3(2.9294). 

The characteristic cannot be fractional and the mantissa must be positive. 

Hence, to perform this division by 3, we make the characteristic of log 

0.085 a multiple of 3 by subtracting 1 and then add 1 to the mantissa. The 
actual operation is as follows: 

4(2.9294) = 3(—3 + 1.9294) = —1 + 0.6431 = 1.6431. 

That is, log y = 1.6431 

whence y = 0.4396 

and «x = —0.4396. 
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Some of the steps in the solutions of Examples 1 and 2 have been included 
for expository reasons but may be excluded in actual computations. Thus, 
relation (1) in the solution of Example | may be omitted; its significance is 
clearly indicated in the arrangement of the logarithmic work. 

For speed and accuracy in computations it is desirable to make a tabular 
arrangement or scheme before looking up any logarithms. Then all 
logarithms may be entered at one time. The procedure is illustrated in the 
next example. 

E eaten pe x —) 
. Evalu = {|———_____}. emma eee ae A511 28 6 

SOLUTION. If N represents the numerator and D the denominator of the 
fraction, the schematic arrangement of the logarithmic work appears as 
follows: 

log 8264 = log 2.351 = 

+log 0.311 = +log 28.6 = 

log N= log D= 

—log D= 

log N/D = 

4 log N/D = = log x 

r= 

The next step is to enter all the logarithms in the above arrangement and 
complete the operation, which then appears as follows: 

log 8264 = 3.9172 log 2.351 = 0.3713 
+log 0.311 = 1.4928 +log 28.6 = 1.4564 

log N = 3.4100 log D = 1.8277 
Sige DSi, 
log N/D = 1.5823 

4 log N/D = 0.79115 = log x 

Onl om. 

NOTE. For greater compactness in the arrangement of the logarithmic work 

involving the operation of division, some authors use cologarithms. The 

cologarithm of a number is the logarithm of its reciprocal. Its use permits addi- 

tion in place of subtraction of logarithms. The abbreviation for cologarithm is 

colog. Thus, colog N = log I/N. 
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EXERCISES. GROUP 61 

In each of Exs. 1-8, evaluate the given logarithm. 

1. log, 20. 2. logs 17. Se 10g¢-6.1. 4. log, 5. 

api inte 6. In 7. hell, 3, 8. log, 2.31. 

9. Verify all the computations in Example 3 (Sec. 16.8). 

10. Show that colog N = —log N and that log N/D = log N + colog D. 

In each of Exs. 11-26, evaluate the given expression by logarithms. 

11. 431 x 0.4126. 12. 3.063 ~ 28.41. 

13 9912 513 11 0.0061, 14285.23 SC 614 = 21-364 
7.203 x 34.2 , 3.87 x 3.142 

Phi crrry  < "2.718 x 0.0116° 
17. (4.21)?4(0.7321). 18. (21.39)4(1.237). 

22.3 x 0.041 x 236.8 bi 181.2 x 415.3 x 62.91 

Ae aes ae OOO "2013 x 341.9 x 85.86 ° 

(91.6)2 x 41.62 V/32.17 x 55.6 
Pile —_s—-~—~—~— . Pephe SS — 5 

V724.1 75.113 x V86.92 

4V39.6 x 3 W812 (21.42)?% x (1.114)% 

Ot eaiay 1) 54 (38.26) 

: (2 x 25.03)" jae x i 

\A/807 1101) 76.91 x 70.0163) — 

27. Find the area of a triangle whose base and altitude are 1.683 ft and 0.9621 

ft, respectively. 

28. Find the area and circumference of a circle whose diameter is 2.426 in. 

29. The surface S and the volume V of a sphere of radius r are given by the 

formulas S = 47r? and V = $nr°. Find the surface and volume of a sphere 

whose diameter is 2.03 in. 

30. The volume V of a right circular cone of base radius r and altitude h is 

given by the formula V = }7r?h, Find the volume of a right circular cone 

whose base radius is 0.7561 in. and whose altitude is 4.023 in. 

31. If a, b,and c are the sides of a triangle and s = $(a + b + c), the area K of 

the triangle is given by the formula K = Vs(s — als — bs —c). Find the 

area of a triangle whose sides are 5.21, 7.03, and 10.2. 

32. Find the area of a triangle whose sides are 11.3, 15.2, and 21.1. 

33) The period ¢ (seconds) of a simple pendulum is given by the formula 

l 
i Peake , where / (feet) is the length of the pendulum and & = 32.17 ft per 

fo) 

second? is the acceleration of gravity. Find the period of a pendulum 15 in. long. 
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34. Find the length of a pendulum whose period is 1 second. 

In each of Exs. 35-40, find any real solutions to 4 significant figures. 

35. Se Te, 3656 — et 2. 

0 all set 9 aaa 382" + 10e“ — 7° = 0. 

39. e* — 4e* = 21. 40. e** + 4e* — 1le* = 30. 



17 

Interest and annuities 

17.1. INTRODUCTION 

This chapter considers briefly some of the more common financial 
transactions encountered by the average person. Such matters may be 

roughly divided into two broad classifications: (1) income from invest- 
ments and (2) payments, generally of a periodic nature, for some particular 
future objective. Under the first item we have the income derived in the 
form of interest and dividends from savings accounts, stocks, and bonds. 

Under the second item we consider payments, usually each of a fixed 
amount, made at regular intervals for various purposes. Examples of such 
payments are those made in connection with mortgages, installment 

purchases, insurance policies, pension plans, and the creation of special 
funds. 

The student will realize that in assigning only a short chapter to a few 

problems of finance, we are merely giving a brief introduction to a subject 
of considerable magnitude and importance. Entire treatises are devoted 

solely to the theory and applications of financial mathematics. The subject 
is naturally of vital concern to financial institutions, insurance companies, 
and business enterprises. 

17.2. SIMPLE INTEREST 

By interest on a sum of money called the principal, we mean a fee 
charged for the use of that money. The interest is a fractional part of the 
principal; this fraction, expressed as a per cent, is called the rate of interest 

and is generally quoted for a period of 1 year. Thus, a rate of 4°% means 
that for each dollar loaned, the borrower must pay 4 cents as the interest 
for 1 year. 

382 
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There are two types of interest, simple and compound. The former will 
be considered in this section and the latter in the next. When interest is 
paid at the end of a specified period of time and is computed only on the 
original principal, it is called simple interest. Generally simple interest is 
paid for comparatively short periods of time. For example, consider a 
$1000 bond which pays interest semiannually at the rate of 4% per year. 
Then at the end of a specified period of 6 months, the simple interest on the 
bond is equal to $1000 x 0.02 or $20. 

We will now consider the general problem of simple interest. Let P 
represent the principal, i the rate of interest for each of n periods of time, 
and / the simple interest at the end of n periods. Then 

(1) I = Pni. 

The sum of the principal and interest is called the amount and is here 
designated by A. Hence, from (1), 

(2) A =P + Pni = P(1 + ni). 

The present value of an amount A as given by (2) is defined as the sum of 

money which must be invested now at the rate 7 per period in order to 
equal A at the end of n periods of time. Evidently the present value of A is 
P and, from (2), is given by 

(3) P=AQl- nt 

For convenient reference we record these results as 

Theorem 1. Let P be the principal and the present value of an amount A, 

I the simple interest at the end of n periods of time, and i the rate of interest 

for each period. Then 

I= Pni; A= P(1 + ni); P= A(L + ni). 

Example 1. Let the annual rate of interest be 6%. (a) Find the simple 

interest and amount of $500 at the end of 3 months. 

(b) Find the present value of $600 due in 6 months at simple interest. 

: . 0.06 
SOLUTION. (a) The rate i for a period of 3 months is we 0.015. 

Hence, for P = $500, the simple interest by (1) is 

I = Pni = $500 x 0.015 = $7.50, 

and by (2), the amount is 

A =P + Pni = $500 + $7.50 = $507.50. 
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0.06 
(b) The rate i for a period of 6 months is ees 0.03. By (3), the 

present value is 
A $600 

= ———__ = $582.52. Pe = 
1+ni 1-+0.03 

In connection with loans at simple interest and for short periods of time, 
it is customary for banks to charge the interest at the time the loan is made. 
This deduction is called bank discount. Thus, for a loan of $1000 at 6% 

for a period of 6 months, the bank discount is $1000 x 0.03 = $30. The 
borrower then actually receives $1000 — $30 or $970 although he is 
required to repay the entire loan of $1000 at the end of 6 months. Evidently 
the rate of interest to the borrower is then greater than 6%. This fact is 

also illustrated in 

Example 2. A man borrows $2000 from a bank for a period of 3 
months at 5%. If he pays the bank discount, find his actual rate of interest. 

SOLUTION. The bank discount is $2000 x 4 x 0.05 = $25. The bor- 

rower then receives $2000 — $25 or $1975, which we may regard as the 
present value of an amount of $2000 due at the end of 3 months. Let r be 
the annual rate of interest required for $1975 to amount to $2000 at the end 
of 3 months. The interest J = $25, so that from relation (1) above, J = 

Pni, we have 

25 = 1975 $r 

whence r= 00. = 5.06%. 
1975 

17.3. COMPOUND INTEREST 

When simple interest becomes due at the end of a specified period, it may 

be added to the original principal to form a new principal. The interest for 
the next period is then computed on the new principal. If this process is 
carried on for two or more periods, the total increase above the original 

principal is called the compound interest. The sum of the original principal 
and the compound interest is called the compound amount. The time 

interval between two successive conversions of interest into principal is 
called the interest period or conversion period. The common interest 
periods are a year, 6 months, and 3 months, and the principal is then said 
to be compounded annually, semiannually, and quarterly, respectively. 
While compound interest is computed for each period at the rate for that 
period, the rate of interest, as in the case of simple interest, is quoted on an 
annual basis and is called the nominal rate. 
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As an illustration of the preceding terms, let us observe the effect of 
compounding on an original principal of $1000 which is to be compounded 
quarterly at a nominal rate of 4%. The rate of interest for each interest 
period of 3 months is then 1%. We exhibit the compounding for 1 year in 
Table 1. 

TABLE 1 

Principal at At End of Period 

Quarterly Beginning of ———————— 
Period Period Interest for Period Comp’d Int. Comp’d Am’t. 

First 1000.00 1000 x 0.01 = 10.00 10.00 1010.00 

Second 1010.00 LOLORO: 01s —=s110510, 20.10 1020.10 

Third 1020.10 1020.10 x 0.01 = 10.20 30.30 1030.30 

Fourth 1030.30 1030.30 x 0.01 = 10.30 40.60 1040.60 

We will now consider the general problem of compound interest. Let 

r = nominal (annual) rate of interest, 

m = number of conversion periods per year, 

~. = interest rate for each conversion period = r/m, 

n = total number of conversion periods, 

P = original principal, 

A,, = compound amount at end of n periods. 

At the end of the first period, the interest is Pi and the amount is 

(1) A, =P+4+Pi=P(1 +i). 

The principal at the beginning of the second period is then A, and the 
interest at the end of that period is A,iso that the amount at the end of the 

second period is 
A, = A, + Ayi = A,(1 + 7) 

From (1) = Pili +i +1) = Pd + i). 

Similarly, we find that the amount at the end of the third period is 

Ag = Pi + De 

Continuing this process, we find that the compound amount at the end of 

n periods is 

(2) Ap) (e-E)e 

In relation (2), the original principal P is called the present value of the 

amount A,. From (2) we have 

(3) PA ee iy 
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The difference A,, — P is the total compound interest accumulated at the 

end of n periods; it is also called the discount on A,,. 

We record the preceding results as 

Theorem 2. Let P be the original principal and the present value of the 

compound amount A,, at the end of n periods when i is the interest rate for 

each period. Then 
A, = P(l +i)"; P= A,(1 + i)-”. 

It is evident from the formulas of Theorem 2 that problems in compound 
interest may be computed by means of logarithms (Sec. 16.8). However, 
such problems may also be solved by means of tables of values of (1 + i)” 
and (1 + i)-". Short tables of this type are given in Appendix II. 

Example 1. Find the compound amount at the end of 5 years for a sum 
of $1000 invested at a nominal rate of 6% and compounded quarterly. 

SOLUTION. In this problem we are to find A, when 

» 9.06 
P = $1000, Nae pe UE and n=5 xX 4= 20. 

In Table 3 (Appendix II) for the compound amount (1 + 7)” of $1 at the 
end of 7 periods, we find that when i = 14 %andn = 20,(1 + i)” = 1.3469. 

Hence, for P = $1000, we have 

A, = PUL + i)” = 1000(1 + 0.015)?° = 1000(1.3469) = $1346.90. 

The solution by logarithms is as follows: 

log (1 + 0.015)? = 20 log 1.015 = 20(0.0065) = 0.1300 

Hence, log A,, = log 1000 + log (1.015)?° 

= 3 + 0.1300 = 3.1300, 

whence A,, = $1349. 

The discrepancy in these two results is due to the fact that our table of 
logarithms is to four places only. A table of logarithms to six places gives a 
result agreeing with that obtained by the table for (1 4+ i)”. 

In computing compound interest at the end of many conversion periods, 
it is necessary to use logarithms of 1 + i to six or more places. 

Example 2. Determine the present value of $4000 due at the end of 4 
years if the nominal rate is 4% compounded semiannually. 

SOLUTION. In this problem we are to find P when 4, = 4000, i =2% 
andn=4x2=8. 



Sec. 3 Compound Interest 387 

In Table 4 (Appendix II) for the present value (1 + i)-" of $1 due at 
the end of 7 periods, we find that when i = 27, andn = 8, (1 +i)" = 
0.85349. Hence, for A,, = 4000, we have 

P = A,(1 +i) = 4000(1 + 0.02)-8 = 4000(0.85349) = $3413.96 

The solution of this problem by logarithms is left as an exercise to the 
student. 

If interest is compounded annually, the amount at the end of | year is the 
same as that obtained in simple interest. But if interest is compounded 
more than once during the year, the amount at the end of the year is 
greater than that obtained in simple interest. For example, one dollar at 
6% simple interest amounts to $1.06 at the end of the year. But if interest 
at the same nominal rate is compounded semiannually, one dollar amounts 

to (1 + 0.03)? = $1.0609 at the end of the year. In this latter case, the 

interest rate for | year is 6.09 % and is greater than the nominal rate of 6 %. 
We then say that 6.09 % is the effective rate of interest. 

In general, the interest rate for | year that is equivalent to a given rate 
for each conversion period is called the effective rate. We will now find the 
relation between the nominal and effective rates of interest. Let r represent 

the nominal rate compounded n times a year, and let j represent the equi- 

valent effective rate. Then, by definition of effective rate, we must have 

1+j= (1 + ") 
n 

We record this result as 

Theorem 3. Jf r is the nominal rate of interest compounded n times a 
year and jis the equivalent effective rate of interest, then j andr are connected 

by the relation 

1+j= (1427. 

Example 3. Find the effective rate of interest equivalent to a nominal 

rate of 5°% compounded semiannually. 

SOLUTION. By Theorem 3, 

fe (1 +2) -1 = + 0025"—1 
n 

0506 — "lt —10:0 5061 — 95:06 7 By Table 3, 

Consider now that interest is compounded n times a year. We have seen 

that as n increases, the effective rate of interest also increases. The student 
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may therefore get the impression that if m is increased without limit, the 
effective rate is also increased without limit. This, however, is not the case, 

as we shall now see. 
Let r be the nominal rate and let interest be compounded zn times a year. 

Then by Theorem 2, the amount a,, of $1 at the end of 1 year is given by 

a, = ( + ef 7 
n 

Now let n increase without limit, symbolically expressed as n — oo (Sec. 
10.5). We then say that interest is compounded continuously. It is shown in 

the calculus that 

lim (: + ") =. 
n> co n 

where e is the base of the Napierian system of logarithms and is equal to 
2.71828 - - - (Sec. 16.4). Since e and r are both finite quantities, e” is also a 
finite quantity. Hence, no matter how large a value is assigned to n, a, is 
finite and, consequently, by Theorem 3, the effective rate 7 = a,, — 1 is also 
finite. For example, for a nominal rate r = 6%, the amount of $1 at the 

end of | year, when compounded continuously, has the limiting value 
e°-6 = (2.71828 - - -)°-6 = $1.06184, and the effective rate is limited to 
6.184%. 

To point up the effects of increasing the number of times interest is 
compounded during | year, Table 2 is given. 

TABLE 2 

AMOUNT AT END OF | YEAR FOR $1 AT 6% ANNUAL 

INTEREST COMPOUNDED 71 TIMES PER YEAR 

n Amount 

1 1.06000 

2 1.06090 

3 1.06121 

4 1.06136 

6 1.06152 

12 1.06168 

24 1.06176 

oe) 1.06184 

A study of the values in this table should help to dispel many of the 
erroneous conceptions of the effects of the compounding of interest. 
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EXERCISES. GROUP 62 

1. Find the simple interest on $500 for 6 months at the annual rate of 6 %. 
2. Find the simple interest on $800 for 10 months at 4 Whe 

3. Find the amount of $750 for 4 months at 5 % simple interest. 

4. Find the amount of $2100 for 8 months at 34 % simple interest. 

5. Find the present value of $1000 due in 3 months at 4% simple interest. 

6. Find the present value of $1200 due in 6 months at 5 °% 6 simple interest. 

te A principal of $1500 amounts to $1530 at the end of 8 months. Find the 

rate of simple interest. 

8. A loan of $3600 is repaid by a payment of $3654 at the end of 4 months. 

Find the rate of simple interest. 

9. A man borrows $3000 from a bank for a period of 6 months at 6 %. If he 

pays the bank discount, find his actual rate of interest. 

10. A man borrows $4000 from a bank for a period of 9 months at 5%. If he 

pays the bank discount and a service charge of $10 in advance, find his actual 

rate of interest. 

11. Determine how long it will take a sum of money to double itself at 4% 
simple interest. 

12. Determine how long it will take a sum of money to double itself at 5 % 

simple interest. 

13. Find the rate of interest if a sum of money is to double itself in 40 years at 
simple interest. 

14. Establish relation (2) of Sec. 17.3 by mathematical induction. 

15. Obtain relation (2) of Sec. 17.3 as the (m + 1)th term of a geometric 

progression whose first term is P and whose common ratio is 1 + i (Sec. 10.3). 

16. Find the compound amount at the end of 4 years for a sum of $500 
invested at a nominal rate of 5 % and compounded semiannually. Use Table 3 

(Appendix II). 

17. Solve Ex. 16 by logarithms. 

18. Find the compound amount at the end of 6 years for a sum of $800 
invested at a nominal rate of 8 % and compounded quarterly. 

19. Find the total accumulated compound interest in Ex. 18. 

20. Solve Example 2 of Sec. 17.3 by logarithms. 

21. Determine the present value of $5000 due at the end of 2 years if the 

nominal rate is 6 % compounded quarterly. Use Table 4 (Appendix II). 

22. Solve Ex. 21 by logarithms. 

23. A man invests $2000 at 3 % compounded semiannually in order to create a 

special fund available 10 years mes Find the amount of this fund. 
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24, A man wishes to have a fund of $8000 available for his son’s college educa- 

tion 16 years hence. How much must he invest now for this purpose at 4 7 

compounded semiannually ? 

25. In how many years will $2000 amount to $5000 if invested now at 6% 

compounded annually? Solve by logarithms. 

26. Solve Ex. 25 by linear interpolation in Table 3 (Appendix II). 

27. Determine how long it will take a sum of money to double itself at 5% 

compounded semiannually. Solve by logarithms. 

28. Solve Ex. 27 by linear interpolation in Table 3 (Appendix ID). 

29. Solve the relation of Theorem 3 (Sec. 17.3) for jin terms of r and also for r 

in terms of /. s 

30. Find the effective rate of interest equivalent to a nominal rate of 6% 

compounded quarterly. 

31. Show how Table 3 (Appendix II) may be used to determine values of 

(1 + 7)” for positive integral values of n > 50. 

32. Show how the binomial theorem (Sec. 7.4) may be used to compute com- 
pound amount. 

33. Evaluate (1 + 0.015)® by the binomial theorem and compare the result 

with the value given in Table 3 (Appendix IJ). 

34. Find the nominal rate compounded semiannually equivalent to an effective 
rate of 4%. Use the binomial theorem. 

35. Verify the figures given in Table 2 at the close of Sec. 17.3. 

17.4. ANNUITIES 

An annuity is a sequence of equal periodic payments. Simple examples 
of annuities are the monthly payment of rent and the payment of premiums 
on life insurance policies. 

The term annuity seems to imply that payments are made annually; this, 
however, is not necessarily the case. The time intervals between payments 
may be of any length but for any particular annuity, they are considered to 
be equal. The time interval between two successive payments is called the 
period. In our work here it shall be understood that equal payments are 
made at the end of each period; such a sequence is called an ordinary 
annuity. The time elapsed between the beginning of the first period and the 
end of the last period is called the term of an annuity. 

Consider that each payment of an annuity earns compound interest 

from the time the payment is made until the end of the term, each period 
being considered a conversion period. Then the amount of an annuity at the 
end of its term is defined as the sum of the compound amounts of all the 
payments of the annuity accumulated at the end of the term. In Table 3 
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TABLES 

Payment Compound Amount of 
Quarterly at End Payment of End of 
Period of Period Period 

First $100 100(1.015)? = $104.57 
Second 100 100(1.015)? = 103.02 
Third 100 100(1.015) = 101.50 
Fourth 100 100.00 

Amount of Annuity = $409.09 

we illustrate the various steps in obtaining the amount of an annuity for a 
term of | year, where payments of $100 each are made at the end of each 
of four periods, the nominal rate of interest being 6%. The interest rate 
for each period of 3 months is then 1.5%. 

It is evident that the amount of an annuity is obtained as the sum of a 
geometric progression. This is also seen in the following determination 
of the general formula for the amount of an ordinary annuity. 

Let us now consider an ordinary annuity where R is the payment made 
at the end of each of n periods and /is the rate of interest for each period. 
Since the first payment is made at the end of the first period, it will accumu- 
late interest for m — | periods and, by Theorem 2 (Sec. 17.3), will amount 

to R(1 + i)”"1 at the end of the term. Similarly, the second payment will 
accumulate interest for n — 2 periods and will amount to R(1 + 7)" atthe 

end of the term. Continuing this way, we see that the (n — 1)th payment 
will amount to R(1 + i) and that the nth or final payment amounts to 

simply R. Writing these amounts in reverse order, we have 

RAB i eR at) ree (it 8) t RO), 

which is a geometric progression of n terms with 1 + 7as its common ratio. 

By definition, the sum S of this progression is the amount of the annuity 

and, by Theorem 2 of Sec. 10.3, its value is given by 

(1) Sik (elias 240 EEN Sie i 
1—(1+ i) i 

For the particular case where R = 1, Sis designated by the symbol sj; 

so that from (1), 
| 

Q) a= 
and 
(3) S = Rs7;. 



392 Interest and Annuities Ch. 17 

To facilitate the solution of problems in annuities, tables of values of 
Sq; have been made up. A short table of this type is given as Table 5 in 

Appendix II. 
We next consider the present value of an annuity which is defined as the 

sum of the present values of all the payments. As before, for an ordinary 
annuity, let R be the payment made at the end of each of n periods and let i 
be the rate of interest for each period. Then by Theorem 2 (Sec. 17.3), the 
present value of the first payment (made at the end of the first period) is 
R( + i)~!; the presentvalue of the second payment (made at the end of the 
second period) is R(1 + i)-*; and so on. The present value of the last 
or mth payment is R(1 + i)-". The present value A of the annuity is the 
sum of these present values of the payments, and hence 

A= R11 + ir) RODS + -: PRO +, 

a geometric progression of n terms with (1 + 7)~* as its common ratio. 
Then, by Theorem 2 of Sec. 10.3, 

ER ict el Lira endo A 
1—-(1+ i+ 

Multiplying numerator and denominator by | + /, we obtain 

(4) ee eter dca glenda 

Uh-s erie | i 

For the particular case where R = 1, A is designated by the symbol ay, 
so that from (4), 

(5) a eae ee 
i 

and 

(6) A = Raj. 

A short table of values of a7; is given as Table 6 in Appendix II. 
For convenient reference we record the preceding results as 

Theorem 4. Let S be the amount and A the present value of an ordinary 
annuity consisting of n payments of R with i the rate of interest for each 
period. Then 

Ri ai ee AS pea 

i i 
Sia 

Example. An ordinary annuity consists of payments of $300 made 
semiannually for 5 years, the nominal rate of interest being 3%. Find (a) 
the amount and (b) the present value of this annuity. 
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SOLUTION. (a) For this annuity, R = 300, the number of periods n = 10, 
and the interest rate for each period i = 1.5%. Forn = 10 andi = 1.5 as 
Table 5 (Appendix I1) gives the value Sq; = 10.7027. Hence, by relation 
(3), the required amount is 

S = Rsq; = 300(10.7027) = $3210.81. 

(b) For n = 10 and i= 1.5%, Table 6 (Appendix II) gives the value 
ay]; = 9.2222. Hence, by relation (6), the required present value is 

A = Ray; = 300(9.2222) = $2766.66. 

NoTE. Annuity computations may also be made by means of logarithms or the 
binomial theorem. For great accuracy, particularly for annuities over long 
terms, extensive tables of logarithms and tables of sz; and ay; are required. 

17.5. APPLICATIONS OF ANNUITIES 

In this section we discuss several examples of some financial transactions 
which are essentially problems in annuities. 

Sinking Fund 

A sum of money accumulated to pay an obligation due at some future 

date is called a sinking fund. Such a fund does not include any payments of 
interest on the obligation; these payments are considered as a separate 
item. A sinking fund is usually created by investing equal sums of money 

at the end of equal periods of time. It is therefore the amount S of an 
annuity as given in Theorem 4 (Sec. 17.4). 

Sinking funds are commonly established for retiring a loan due at a 

future date, for example, the redemption of a bond issue. However, 
sinking funds may be created for other purposes. Thus, a sinking fund is 
often used for replacing worn-out or obsolete equipment; it is then called 
a depreciation fund. Note that a depreciation fund does not include any 

allowance for current maintenance charges and interest on invested capital. 

Example 1. The useful life of some manufacturing equipment is 10 

years and the net cost of replacing it at the end of that time is $15,000. 

Determine the semiannual amounts which must be invested at a nominal 

rate of 5°% to create the required depreciation fund. 

SOLUTION. In this problem we are required to find the periodic payment 

R of an annuity whose amount S is $15,000 at the end of n = 20 periods 

and whose rate of interest for each period is i = 2.5%. 



394 Interest and Annuities Ch. 17 

For n = 20 andi = 2.5%, Table 5 (Appendix II) gives the value sq; = 

25.5447. 
From relation (3), Sec. 17.4, S = Rsz;. Hence 

pee 
smi 25.5447 

= $587.20 (very nearly). 

Amortization 

The discharge of an interest-bearing debt by equal payments made at the 
end of equal periods of time is called amortization. It is clear that each 
payment must exceed the interest charge on the debt for the first period. 
These payments serve to decrease the debt each period. As-a result, the 
part of each payment that is used to pay interest on the debt is decreasing 
and the rest of the payment applied to the debt is increasing correspond- 
ingly. This shift in the distribution of each payment to debt and interest is 
illustrated in the amortization schedule accompanying Example 2 below. 
The student should note that amortization of a debt differs from the 
creation of a sinking fund by the fact that it provides not only for the 
payment of the debt but also for the payment of the intervening interest 
on the debt. 

It is evident from the definition above that amortization of a debt is 
effected by means of an annuity. The debt to be amortized is the present 
value A of an annuity. If Ris the payment at the end of each of n periods 
and iis the interest rate for each period, then the debt A to be amortized is 
given by relation (4) of Sec. 17.4, namely, A = Raj. 

Example 2. A loan of $4000 is to be amortized by five equal annual 
payments. Find the annual payment if the interest rate is 5% compounded 
annually. 

SOLUTION. In this problem we are required to find the annual payment 
R of an annuity whose present value A = $4000, whose term is n = 5 
periods, and whose rate of interest i for each period is 5%. 

For n=5 and i= 5%, Table 6 (Appendix II) gives the value ay; = 
4.3295. Hence from the relation A = Ray;, we have 

Ra = = $923,90 

It is instructive to observe, for each of the five annual periods, the dis- 

tribution of each annual payment between interest and principal (debt). 
This is shown in Table 4, which is appropriately called an amortization 
schedule, 

The figures in column (3) are 5% of the corresponding figures in column 
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TABLE 4 

(1) (2) (3) (4) 
ae ee ne ee ee Ga ee a PB 

Principal Interest Principal 

at Beginning Annual Payment Paid at Repaid at 
Year of Year at End of Year End of Year End of Year 

1 $4000.00 $923.90 $200.00 $723.90 

2 3276.10 923.90 163.81 760.09 

3 2516.01 923.90 125.80 798.10 

4 1717.91 923.90 85.90 838.00 

5 879.91 923.90 43.99 879.91 

Totals 4619.50 619.50 4000.00 

(1). The figures in column (4) are obtained by subtracting the correspond- 
ing figures in column (3) from the annual payment of $923.90 given in 
column (2). 

One of the most common examples of amortization is the payment of a 

mortgage on a house. This payment is usually made by means of equal 
monthly installments, each being greater than the first month’s interest on 
the mortgage. The lending institution generally supplies the borrower with 
an amortization schedule showing the distribution of each monthly install- 
ment between interest and principal. 
We will now derive a useful formula which gives the time required to 

amortize a mortgage. For this purpose let 

R = the monthly installment, 

i = the monthly rate of interest, 

n = number of months to amortize mortgage, 

M = the original mortgage. 

From Theorem 4 (Sec. 17.4), with A = M, the formula for the present 

value of an annuity is 
eee ee 

i 

Mi ce 
whence tien tah 

2 Mi R—Mi 

, R 
1 ees Then (1 + i) ReMi 

and n log (1 + 7) = log R — log (R — Mi), 
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from which we have our required formula 

log Ko log (Ri Ms) 

log (1 1) 

Example 3. Find the number of months required to amortize a 
mortgage of $1000 by equal monthly payments of $10, interest being at the 

annual rate of 6%. 

SOLUTION. Here, R = 10, i = 0.005, and M = 1000. Substituting these 
values in relation (1) above, we obtain 

— log 10 — iog (10 — 5) 

log (1 + 0.005) 

(1) 

= 139 months (very nearly). 

EXERCISES. GROUP 63 

1. In Theorem 4 of Sec. 17.4, show that A = S(1 +7)”. Verify this relation 

for the example of Sec. 17.4. 

2. By means of logarithms, obtain the value of the amount S in the example of 

Sec. 17.4. 

3. By means of the binomial theorem, obtain the value of the amount S in the 

example of Sec. 17.4. 

In each of Exs. 4-7, find the amount and present value of the annuity described. 

4, Payments of $200 quarterly for 4 years, the nominal rate of interest being 
O%, 

5. Payments of $500 annually for 10 years, the nominal rate of interest being 
4%. 

6. Payments of $400 semiannually for 12 years, the nominal rate of interest 

being 5 %. 

7. Payments of $300 annually for 6 years, the nominal rate of interest being 

BOE. 

8. Find the amount of each payment which must be made quarterly to 
accumulate an amount of $2000 at the end of 5 years, the nominal rate of interest 

being 6 %. 

9. Find the present value of the annuity described in Ex. 8. 

10. If an annuity continues for an unlimited time, it is said to become a 

perpetuity, and we indicate this fact symbolically by writing n > 0. Using 
pole cn (4) of Sec. 17.4, show that the present value of a perpetuity is equal to 

Rim 

11. Using the result of Ex. 10, find the present value of a perpetuity paying 
$1000 semiannually, the nominal rate of interest being 4 %. 

12. A perpetuity whose present value is $10,000 pays $125 quarterly. Find the 
nominal rate of interest. 
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13. A man wishes to accumulate a fund of $8000 to be available 15 years hence 
for his son’s college education. Determine how much he must deposit in a bank 
at the end of each period of 6 months, if interest is compounded semiannually, the 
nominal rate being 4 %. 

14. Find the number of quarterly payments of $100 each that must be made to 
accumulate a sum of $6000, the nominal rate of interest being 6 %. 

15. Find the number of semiannual payments of $300 each that must be made 
to accumulate a sum whose present value is $2700, the nominal rate of interest 
being 5 %. 

16. Aman owns a bond which is due in 10 years and pays semiannual dividends 
of $20 each. As each dividend is received, it is invested at a nominal rate of 4 Ws 
compounded semiannually. Find the amount of this investment at the time the 

bond is redeemed. 

17. A bond whose redemption price at the end of 10 years is $2000 has 20 
coupons attached, each coupon having a value of $40 semiannually. Find the 

present value of both these coupons and the bond on the basis of a nominal rate of 

5% compounded semiannually. 

18. In order to construct a school, a town obtains $200,000 by means of a bond 

issue due in 15 years. Determine the amount to be deposited semiannually in a 

sinking fund to redeem this issue if the return on these deposits is at the nominal 
rate of 4% compounded semiannually. 

19. A company finds that the useful life of a truck is 8 years at the end of which 

time the replacement cost is $5000. Find the amount which must be invested 

quarterly at a nominal rate of 6% in order to accumulate the replacement cost. 

20. A man agrees to repay a debt of $6000 in one lump sum at the end of 5 
years. If he uses the sinking fund method for this purpose, determine how much 

he must invest semiannually at a nominal rate of 5% compounded semiannually. 

21. If in Ex. 20, the borrower must also pay interest semiannually at a nominal 

rate of 4%, find the total semiannual expense of his debt. 

22. A man wishes to amortize a debt of $10,000 at the end of 4 years by equal 

annual payments. Find the annual payment if the interest rate is 4% com- 

pounded annually. 

23. Construct an amortization schedule for Ex. 22. 

24. A company borrows $50,000 to modernize its plant. To amortize this 

debt, it makes equal quarterly payments for a period of 2 years. Find the amount 

of each payment if the nominal rate is 6% compounded quarterly. 

25. Construct an amortization schedule for Ex. 24. 

26. A man wishes to provide an annual scholarship of $1000 for each of 10 

years. How much must he invest for this purpose at the beginning of the 10-year 

period at 5% compounded annually ? 

27. Verify the result of Example 3 of Sec. 17.5. 

28. How long will it take to amortize a mortgage of $8000 by equal monthly 

payments of $50, interest being at the nominal rate of 45%? 
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29. A man wishes to amortize a mortgage of $10,000 by equal monthly 
payments over a period of 10 years. Find the amount of each payment if the 
nominal rate of interest is 6%. 

30. A man borrows $1200 from a bank at the nominal rate of 44.°%, with the 

agreement that he is to pay the bank discount for 1 year at once and pay $100 per 
month for 12 months. Determine his actual rate of interest. 
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B. Trigonometry 

1. DEFINITIONS OF THE TRIGONOMETRIC FUNCTIONS. Let 6 be an angle whose 

range of values is given by —360° < 9 < 360°. For the purposes of defining 

such an angle and its trigonometric functions it is convenient to use the 

rectangular coordinate system. The statements which follow apply to each 

of the four positions shown in Fig. 45. 

Figure 45 

If a line coincident with the X-axis is rotated in the X¥ Y-coordinate plane 
about the origin O into a new position OA, there is said to be generated an angle 

XOA = 6 having OX as its initial side and OA as its terminal side. If the rota- 
tion is counterclockwise, the angle generated is said to be positive; for clockwise 
rotation (shown dotted in the figures), the angle is said to be negative. The 
angle is said to lie in the same quadrant as its terminal side. 

On the terminal side OA take any point P distinct from O and having co- 
ordinates (x,y). From P drop a perpendicular PB to the X-axis. The line 
segment OP is called the radius vector, is designated by r, and is always taken 
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as positive. In the triangle OPB, OB = x and PB = y have the signs of the 
coordinates of the point P, as indicated for the four quadrants. Then, irrespec- 
tive of the quadrant in which @ lies, the six trigonometric functions of @ are 
defined both as to magnitude and sign by the following ratios: 

sine of 6: sin@ =-, cosine of 0: cos0 =-, 
r r 

Yy z 
tangent of 6: tan 6 = =e cotangent of 6: cot@ =-, 

‘ y 

r if 

secant of 6: sec 6 = > cosecant of 8: csc6 =-. 
y 

The definitions hold without change for positive and negative angles greater 
than 360° in numerical value. 

2. FUNDAMENTAL TRIGONOMETRIC IDENTITIES 

: 1 1 1 Aaa sin 0 

Seeman er cosh a cost” 

Se @ eck) il, i 4taneO gee, i) - Gar) exe), 

3. REDUCTION FORMULAS 

sin (90° + 0) =cos9, cos (90° + 8) Fsin§, tan(90° + 6) = +cot 8, 

sin (180° + 6) = Fsin 6, cos(180° + 6) —cos#, tan (180° + 0) = +tan 6, 

sin (270° + #) = —cos 8, cos(270° + 6) = +sin6, tan (270° + @) = + cot 6, 

sin (360° + 0) = +sin 6, cos (360° + #) =cos 8, tan (360° + 0) = +tan 0. 

4. RADIAN MEASURE OF ANGLES. Let 6 be a central angle intercepting an arc 

of length s on a circle of radius r. Then the measure of the angle @ in radians 

is defined by oe =. Note that, since s and r are lengths, this ratio is a pure 

number. From this definition of radian measure we have at once the conver- 

sion relation: 
7 tadians = 180° 

whence 
fe} 

1 radian = = 57.2958° (approx.) = 57°17’45” (approx.), 

i ay radian = 0.017453 radian (approx.). 
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5. TRIGONOMETRIC FUNCTIONS OF SPECIAL ANGLES 

Appendix I 

Radians Degrees 

Angle @ in 

0 0° 

uy ° 74 30 

g {e} | 45 

aE ° 3 60 

w ° 5 90 

sin 6 

— 

6. ADDITION AND SUBTRACTION FORMULAS 

cos 0 tan 0 

sin (w + y) = sinzcosy +cos2 sin y, 

cos (« + y) =cosxcosy F sinwzsiny, 

tan(@@ +y) = 

7. DOUBLE-ANGLE FORMULAS 

tanz + tany 

SN 29 SD Sin 48 COS 

cos 2” 

tan 2% 
2 tan x 

1 — tan? x” 

8. HALF-ANGLE FORMULAS 

sin = 
2 

C. The Greek Alphabet 

©@UNMPHw> 

alpha 
beta 

gamma 

delta 

epsilon 

zeta 

eta 

theta 

cos? x — sin? x 

t iota 

« kappa 

A lambda 

“mu 

nu 

E xi 

0 omicron 
sa 

pl pa) EZ ee oe 

1 + tanztany” 

= 1 —2sin*z = 2 cos*2 — 1, 

Pp tho 

o sigma 
7 tau 
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1. NATURAL TRIGONOMETRIC FUNCTIONS 

Radians |Degrees} Sine Cosine | Tangent | Cotangent 

.5708 0000 0.0 0000 | 1.0000 0000 aa 90.0 1 

0087 0.5 .0087 | 1.0000 .0087 |114.5887 89.5 1.5621 
0175 1.0 .0175 . 9998 .0175 57.2900 89.0 1.5533 
0262 1.5 .0262 29997 .0262 | 38.1885 88.5 1.5446 
0349 2.0 .0349 . 9994 .0349 | 28.6363 88.0 1.5359 
0436 2.5 0436 .9990 .0437 | 22.9038 87.5 1.5272 

.0524 3.0 .0523 . 9986 .0524 19.0811 87.0 1.5184 

.0611 3.5 .0610 .9981 .0612 16.3499 86.5 1.5097 

.0698 4.0 .0698 .9976 .0699 14.3007 86 0 1.5010 

.0785 4.5 .0785 - 9969 .0787 12.7062 85.5 1.4923 
0873 5.0 .0872 .9962 .0875 11.4301 85.0 1.4835 

0960 5.5 .0958 .9954 .0963 10.3854 84.5 1.4748 
1047 6.0 1045 9945 -1051 9.5144 84.0 1.4661 
1134 6.5 1132 9936 1139 8.7769 83.5 1.4574 
1222 7.0 1219 .9925 .1228 8.1443 83.0 1.4486 
1309 CS 1305 .9914 1317 7.5958 82.5 1.4399 

1396 8.0 1392 9903 1405 7.1154 82.0 1.4312 
. 1484 8.5 1478 .9890 1495 6.6912 81.5 1.4224 
1571 9.0 1564 -9877 1584 6.3138 81.0 1.4137 
1658 9.5 1650 - 9863 1673 5.9758 80.5 1.4050 
1745 10.0 1736 -9848 1763 5.6713 80.0 1.3963 

1833 10.5 1822 9835 1853 5.3955 79.5 1.3875 
1920 0 1908 .9816 1944 5.1446 79.0 1.3788 
2007 11.5 1994 9799 2035 4.9152 78.5 1.3701 
2094 12.0 2079 9781 . 2126 4.7046 78.0 1.3614 
2182 12.5 2164 9763 .2217 4.5107 77.5 1.3526 

2269 13.0 2250 9744 . 2309 4.3315 77.0 1.3439 
2356 13.5 2334 .9724 2401 4.1653 76.5 1.3352 
2443 14.0 2419 -9703 2493 4.0108 76.0 1.3265 
2531 14.5 2504 .9681 2586 3.8667 75.5 1.3177 
2618 15.0 2588 -9659 2679 3.7321 75.0 1.3090 

2705 15.5 2672 -9636 2773 3.6059 74.5 1.3003 
2793 16.0 2756 .9613 2867 3.4874 74.0 1.2915 
2880 16.5 2840 9588 2962 3.3759 73.5 1.2828 
2967 17.0 2924 .9563 3057 3.2709 73.0 1.2741 
3054 17.5 3007 -9537 3153 3.1716 72.5 1.2654 

3142 18.0 3090 9511 3249 3.0777 72.0 1.2566 
3229 18.5 3173 .9483 3346 2.9887 71.5 1.2479 
3316 19.0 3256 .9455 3443 2.9042 71.0 1.2392 
3403 19.5 3338 - 9426 3541 2.8239 70.5 1.2305 
3491 20.0 3420 9397 3640 2.7475 70.0 1.2217 

3578 20.5 3502 9367 3739 2.6746 69.5 1.2130 
3665 21.0 3584 -9336 3839 2.6051 69.0 1.2043 
3752 21.5 3665 .9304 3939 2.5386 68.5 1.1956 
3840 22.0 3746 9272 4040 2.4751 68.0 1.1868 
3927 22.5 3827 -9239 4142 2.4142 67.5 1.1781 

Cosine Sine |Cotangent] Tangent |Degrees| Radians 
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1. NATURAL TRIGONOMETRIC FUNCTIONS 

Radians |Degrees| Sine Cosine | Tangent | Cotangent 
—————$—$—$—$——— re | fe | en 

hs : ibe 
2.2998 66.5 1.1606 
2.2460 66.0 1.1519 
2.1943 65.5 1.1432 
2.1445 65.0 1.1345 

2.0965 64.5 eb 25 
2.0503 64.0 1.1170 
2.0057 63.5 1.1083 
1.9626 63.0 | 1.0996 
1.9210 62.5 1.0908 

4887 28.0 4695 . 8829 5317 1.8807 62.0 | 1.0821 
.4974 28.5 4772 . 8788 5430 1.8418 61.5 1.0734 
.5061 29.0 4848 8746 5543 1.8040 61.0 1.0647 
5149 29.5 4924 .8704 5658 LerOuo 60.5 1.0559 
5236 30.0 5000 .8660 5774 1.7321 60.0 | 1.0472 

5323 30.5 5075 . 8616 5890 1.6977 59.5 1.0385 
5411 3120 5150 .8572 6009 1.6643 59.0 | 1.0297 
5498 31.5 §225 .8526 6128 1.6319 58.5 1.0210 
5585 32.0 5299 . 8480 6249 1.6003 58.0 1.0123 
5672 32.5 5373 .8434 6371 1.5697 57.5 1.0036 

5760 33.0 5446 . 8387 6494 1.5399 57.0 -9948 
5847 SBE 5519 . 8339 6619 1.5108 56.5 .9861 
5934 34.0 5592 .8290 6745 1.4826 56.0 9774 
6021 34.5 5664 .8241 6873 1.4550 DOA - 9687 
6109 35.0 5736 8192 - 7002 1.4281 55.0 .9599 

6196 35.5 5807 .8141 7133 1.4019 54.5 .9512 
6283 36.0 5878 . 8090 7265 1.3764 54.0 .9425 
6370 36.5 5948 8039 7400 1.3514 53.5 9338 
6458 37.0 6018 7986 7536 1.3270 53.0 9250 
6545 AY 6088 7934 - 7673 1.3032 Spd. tes 9163 

6632 38.0 6157 . 7880 7813 1.2799 52.0 .9076 
6720 38.5 6225 . 7826 7954 12572 Saitl 155 8988 
6807 39.0 6293 Sp 8098 1.2349 51.0 .8901 
6894 39.5 6361 .7716 8243 1.2131 50.5 .8814 
6981 40.0 6428 . 7660 8391 1.1918 50.0 8727 

7069 40.5 6494 . 7604 8541 1.1708 49.5 .8639 
7156 41.0 6561 7547 8693 1.1504 49.0 8552 

7243 41.5 6626 . 7490 8847 1.1303 48.5 . 8465 

7330 42.0 6691 .7431 9004 1.1106 48.0 .8378 

7418 42.5 6756 .7373 9163 1.0913 47.5 .8290 

7505 43.0 6820 .7314 9325 1.0724 47.0 8203 

7592 43.5 6884 . 7254 9490 1.0538 46.5 8116 

7679 44.0 6947 .7193 9657 1.0355 46.0 . 8029 

7767 44.5 7009 1133 9827 1.0176 45.5 -7941 

7854 45.0 7071 7071 1.0000 1.0000 45.0 7854 

Cosine Sine |Cotangent) Tangent |Degrees) Radians 
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3. COMPOUND AMOUNT: (1 + i)” 

1.0150 
1.0302 
1.0457 

1.0614 
1.0773 
1.0934 

1.1098 
1.1265 
1.1434 

1.1605 

Isles) 
1.1956 
1.2136 

1.2318 
1.2502 
1.2690 

1.2880 
1.3073 
1.3270 

1.3469 

1.3671 
1.3876 
1.4084 

1.4295 
1.4509 
1.4727 

1.4948 
1.5172 
1.5400 

1.5631 

1.5865 
1.6103 
1.6345 

1.6590 
1.6839 
1.7091 

1.7348 
1.7608 
1.7872 

1.8140 | 2. : ; : : 10.2857 _ 

1.8412 | 2.2522 | 2. : : A 10.9029 
1.8688 | 2.2972 : ‘ 5 : 11.5570 
1.8969 | 2.3432 : : : : 12.2505 

1.9253 | 2.3901 : : . : 12.9855 
1.9542 | 2.4379 5 : ‘ : 13.7646 
1.9835 | 2.4866 : : 3 : 14.5905 

2.0133 | 2.5363 : : 5 : 15.4659 
2.04385 | 2.5871 : : 5 : 16.3939 
2.0741 | 2.6388 : : 6.8333 |10.9213 |17.3775 
2.1052 | 2.6916 : 38 7.1067 |11.4674 | 18.4202 
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4. PRESENT VALUE: (1 + i)-” 

Appendix IT 

6% 
985 22 | .980 39 | .97561 | .97087 | .96154 | .95238 | .94340 
970 66 | .961 17/ .95181 | .94260 | .92456 | .90703 | .89000 
956 32 | .942 32 | .92860 | .91514 | .88900 | .86384 | .83962 
942 18 | .923 85 | .90595 | .88849 | .85480 | .82270 | .79209 
928 26 | .905 73 | .88385 | .86261 | .82193 | .78353 | .74726 
914 54 | .887 97 | .86230 | .83748 | .79031 | .74622 | .70496 
901 03 | .870 56 | .84127 | .81309 | .75992 | .71068 | .66506 
887 71 | .853 49 | .82075 | .78941 | .73069 | .67684 | .62741 
874 59 | .836 76 | .80073 | .76642 | .70259 | .64461 | .59190 
861 67 | .820 35 | .78120 | .74409 | .67556 | .61391 | .55839 
848 93 | .804 26 | .76214 | .72242 | .64958 | .58468 | .52679 
836 39 | .788 49 | .74356 | .70138 | .62460 | .55684 | .49697 
824 03 | .773 03 | .72542 | .68095 | .60057 | .53032 | .46884 
811 85 | .757 88 | .70773 | .66112 | .57748 | .50507 | .44230 
.799 85 | .743 01 | .69047 | .64186 | .55526 | .48102 | .41727 
.788 03 | .728 45 | .67362 | .62317 | .53391 | .45811 | .39365 
.776 39 | .71416| .65720 | .60502 | .51337 | .43630 | .37136 
.764 91 | .70016| .64117 | .58739 | .49363 | .41552 | .35034 
753 61 | .686 43 | .62553 | .57029 | .47464 | .39573 | .33051 
742 47 | .67297| .61027 | .55368 | .45639 | .37689 | .31180 
731 50 | .659 78 | .59539 | .53755 | .43883 | .35894 | .29416 
720 69 | .646 84] .58086 | .52189 | .42196 | .34185 | .27751 
710 04 | .63416] .56670 | .50669 | .40573 | .32557 | .26180 
699 54 | .621 72] .55288 | .49193 | .39012 | .31007 | .24698 
689 21 | .609 53 | .53939 | .47761 | .37512 | .29530 | .23300 
679 02 | .597 58 | .52623 | .46369 | .36065 | .28124 | .21981 
668 99 | .585 86 | .51340 | .45019 | .34682 | .26785 | .20737 
659 10 | .574 37] .50088 | .43708 | .33348 | .25509 | .19563 
649 36 | .563 11! .48866 | .42435 | .32069 | .24295 | .18456 
639 76 | .552 07 | .47674 | .41199 | .30832 | .23138 | .17411 
630 31 | .541 25 | .46511 | .39999 | .29646 | .22036 | .16425 
620 99 | .530 63 | .45377 | .38834 | .28506 | .20987 | .15496 
611 82 | .520 23 | .44270 | .37703 | .27409 | .19987 | .14619 
602 77 | .510 03 | .43191 | .36604 | .26355 | .19035 | .13791 
593 87 | .500 03 | .42137 | .35538 | .25342 | .18129 | .13011 
585 09 | .490 22 | .41109 | .34503 | .24367 | .17266 | .12274 
576 44 | .480 61 | .40107 | .33498 | .23430 | .16444 | .11579 
567 92 | .471 19 | .39128 | .32523 | .22529 | .15661 | .10924 
559 53 | .46195 | .38174 | .31575 | .21662 | .14915 | .10306 
551 26 | .452 89 | .37243 | .30656 | .20829 | .14205 | .09722 
543 12 | .444 01 | .386335 | .29763 | .20028 | .13528 | .09172 
535 09 | .43530| .35448 | .28896 | .19257 | .12884 | .08653 
52718 | .426 77 | .34584 | .28054 | .18517 | .12270 | .08163 

519 39 | .418 40 | .33740 | .27237 | .17805 | .11686 | .07701 
51171 | .410 20| .32917 | .26444 | .17120 | .11130 | .07265 
50415 | .402 15] .32115 | .25674 | .16461 | .10600 | .06854 

496 70 | .394 27 | .31331 | .24926 | .15828 | .10095 | .06466 
489 36 | .386 54 | .30567 | .24200 | .15219 | .09614 | .06100 
482 13 | .378 96 | .29822 | .23495 | .14634 | .09156 | .05755 

-05429 
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1.0000 
2.0150 
3.0452 

4.0909 
5.1523 
6.2296 

7.3230 
8.4328 
9.5593 
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5. AMOUNT OF AN ANNUITY: 53; 

1.0000 
2.0200 
3.0604 

4.1216 
5.2040 
6.3081 

7.4343 
8.5830 
9.7546 10.1591 10.5828 

1.0000 
2.0600 
3.1836 

4.3746 
5.6371 
6.9753 

8.3938 
9.8975 

11.4913 

11.8633 
13.0412 
14,2368 

15.4504 
16.6821 
17.9324 

19.2014 
20.4894 
21.7967 

10.9497 11.2034 11.4639 12.0061 12.5779 

12.1687 
13.4121 
14.6803 

15.9739 
17.2934 
18.6393 

20.0121 
21.4123 
22.8406 

12.4835 
13.7956 
15.1404 

16.5190 
17.9319 
19.3802 

20.8647 
22.3863 
23.9460 

12.8078 
14.1920 
15.6178 

17.0863 
18.5989 
20.1569 

21.7616 
23.4144 
25.1169 

13.4864 
15.0258 
16.6268 

18.2919 
20.0236 
21.8245 

23.6975 
25.6454 
27.6712 

14.2068 
15.9171 
17.7130 

19.5986 
21.5786 
23.6575 

25.8404 
28.1324 
30.5390 

13.1808 

14.9716 
16.8699 
18.8821 

21.0151 
23.2760 
25.6725 

28.2129 
30.9057 
33.7600 

Too ai 
24.4705 
25.8376 
27.2251 

28.6335 
30.0630 
31.5140 

32.9867 
34.4815 
35.9987 

24.2974 25.5447 26.8704 29.7781 33.0660 36.7856 

25.7833 
27.2990 
28.8450 

30.4219 
32.0303 
33.6709 

35.3443 
37.0512 
38.7922 

27.1833 
28.8629 
30.5544 

32.3490 
34.1578 
36.0117 

37.9120 
39.8598 
41.8563 

28.6765 
30.5368 
32.4529 

34.4265 
36.4593 
38.5530 

40.7096 
42.9309 
45.2189 

31.9692 
34.2480 
36.6179 

39.0826 
41.6459 
44,3117 

47.0842 
49.9676 
52.9663 

35.7193 
38.5052 
41.4305 

44.5020 
47.7271 
51.1135 

54.6691 
58.4026 
62.3227 

39.9927 
43.3923 
46.9958 

50.8156 
54.8645 
59.1564 

63.7058 
68.5281 
73.6398 

37.5387 40.5681 43.9027 47.5754 56.0849. 66.4388 79.0582 

39.1018 
40.6883 
42.2986 

43.9331 
45.5921 
47.2760 

48,9851 
50.7199 
52.4807 

42.3794 
44,2270 
46.1116 

48.0338 
49.9945 
51.9944 

54.0343 
56.1149 
58.2372 

46.0003 
48.1503 
50.3540 

52.6129 
54.9282 
57.3014 

59.7339 
62.2273 
64.7830 

50.0027 
52.5028 
55.0778 

57.7302 
60.4621 
63.2759 

66.1742 
69.1594 
72.2342 

59.3283 
62.7015 
66.2095 

69.8579 
73.6522 
77.5983 

81.7022 
85.9703 
90.4091 

70.7608 
75.2988 
80.0638 

85.0670 
90.3203 
95.8363 

101.6281 
107.7095 
114.0950 

84.8017 
90.8898 
97.3432 

104.1838 
111.4348 
119.1209 

127.2681 
135.9042 
145.0585 

54.2679 60.4020 67.4026 75.4013 95.0255 120.7998 154.7620 
56.0819 
57.9231 
59.7920 

61.6889 
63.6142 
65.5684 

67.5519 
69.5652 
71.6087 

62.6100 
64.8622 
67.1595 

69.5027 
71.8927 
74.3306 

76.8172 
79.3535 
81.9406 

70.0876 
72.8398 
75.6608 

78.5523 
81.5161 
84.5540 

87.6679 
90.8596 
94.1311 

78.6633 
82.0232 
85.4839 

89.0484 
92.7199 
96.5015 

100.3965 
104.4084 
108.5406 

99.8265 
104.8196 
110.0124 

115.4129 
121.0294 
126.8706 

132.9454 
139.2632 
145.8337 

127.8398 
135.2318 
142.9933 

151.1430 
159.7002 
168.6852 

178.1194 
188.0254 
198.4267 

165.0477 
175.9505 
187.5076 

199.7580 
212.7435 
226.5081 

241.0986 
256.5645 
272.9584 

73.6828 84.5794 97.4843 112.7969 152.6671 209.3480 290.3359 
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6. PRESENT VALUE OF AN ANNUITY: a= 
ni 

13% 2% 23% 3% 4% 5% 6% 
-9852 -9804 -9756 -9709 -9615 9524 9434 

1.9559 | 1.9416] 1.9274 | 1.9135] 1.8861 1.8594 | 1.8334 
2.9122 | 2.8839 | 2.8560 | 2.8286 | 2.7751 | 2.7232] 2.6730 
3.8544 | 3.8077 | 3.7620 | 3.7171 | 3.6299 | 3.5460 | 3.4651 
4.7826 | 4.7135] 4.6458 | 4.5797] 4.4518 | 4.3295 | 4.2124 
5.6972 | 5.6014 | 5.5081 | 5.4172 | 5.2421 | 5.0757 | 4.9173 
6.5982 | 6.4720 | 6.3494 | 6.2303 | 6.0021 | 5.7864] 5.5824 
7.4859 | 7.3255 | 7.1701 7.0197 | 6.7327 | 6.4632 | 6.2098 
8.3605 | 8.1622 | 7.9709 | 7.7861 | 7.4353 | 7.1078 | 6.8017 

10 9.2222 | 8.9826 | 8.7521 8.5302 | 8.1109 | 7.7217 | 7.3601 

11 | 10.0711} 9.7868 | 9.5142 | 9.2526 | 8.7605 | 8.3064 | 7.8869 
12 | 10.9075 | 10.5753 | 10.2578 | 9.9540 | 9.3851 | 8.8633] 8.3838 
13 | 11.7315 | 11.3484 | 10.9832 | 10.6350 | 9.9856 | 9.3936 | 8.8527 

14 | 12.5434 | 12.1062 | 11.6909 | 11.2961 | 10.5631 | 9.8986 | 9.2950 
15 | 13.3432 | 12.8493 | 12.3814 | 11.9379 | 11.1184 | 10.3797 | 9.7122 
16 | 14.1313 | 13.5777 | 13.0550 | 12.5611 | 11.6523 | 10.8378 | 10.1059 

17 | 14.9076 | 14.2919 | 13.7122 | 13.1661 | 12.1657 | 11.2741 | 10.4773 
18 | 15.6726 | 14.9920 | 14.3534 | 13.7535 | 12.6593 | 11.6896 | 10.8276 
19 | 16.4262 | 15.6785 | 14.9789 | 14.3238 | 13.1339 | 12.0853 | 11.1581 

20 | 17.1686 | 16.3514 | 15.5892 | 14.8775 | 13.5903 | 12.4622 | 11.4699 

21 | 17.9001 | 17.0112 | 16.1845 | 15.4150 | 14.0292 | 12.8212 | 11.7641 
22 | 18.6208 | 17.6580 | 16.7654 | 15.9369 | 14.4511 | 13.1630 | 12.0416 
23 | 19.3309 | 18.2922 | 17.3321 | 16.4436 | 14.8568 | 13.4886 | 12.3034 

24 | 20.0304 | 18.9139 | 17.8850 | 16.9355 | 15.2470 | 13.7986 | 12.5504 
25 | 20.7196 | 19.5235 | 18.4244 | 17.4131 | 15.6221 | 14.0939 | 12.7834 
26 | 21.3986 | 20.1210 | 18.9506 | 17.8768 | 15.9828 | 14.3752 | 13.0032 

27 =| 22.0676 | 20.7069 | 19.4640 | 18.3270 | 16.3296 | 14.6430 | 13.2105 
28 | 22.7267 | 21.2813 | 19.9649 | 18.7641 | 16.6631 | 14.8981 | 13.4062 
29 | 23.3761 | 21.8444 | 20.4535 | 19.1885 | 16.9837 | 15.1411 | 13.5907 

30 | 24.0158 | 22.3965 | 20.9303 | 19.6004 | 17.2920 | 15.3725 | 13.7648 

31 | 24.6461 | 22.9377 | 21.3954 | 20.0004 | 17.5885 | 15.5928 | 13.9291 
32 | 25.2671 | 23.4683 | 21.8492 | 20.3888 | 17.8736 | 15.8027 | 14.0840 
33 | 25.8790 | 23.9886 | 22.2919 | 20.7658 | 18.1476 | 16.0025 | 14.2302 

34 | 26.4817 | 24.4986 | 22.7238 | 21.1318 | 18.4112 | 16.1929 | 14.3681 
35 | 27.0756 | 24.9986 | 23.1452 | 21.4872 | 18.6646 | 16.3742 | 14.4982 
36 | 27.6607 | 25.4888 | 23.5563 | 21.8323 | 18.9083 | 16.5469 | 14.6210 

37 | 28.2371 | 25.9695 | 23.9573 | 22.1672 | 19.1426 | 16.7113 | 14.7368 
38 | 28.8051 | 26.4406 | 24.3486 | 22.4925 | 19.3679 | 16.8679 | 14.8460 
39 | 29.3646 | 26.9026 | 24.7303 | 22.8082 | 19.5845 | 17.0170 | 14.9491 

40 | 29.9158 | 27.3555 | 25.1028 | 23.1148 | 19.7928 | 17.1591 | 15.0463 

41 | 30.4590 | 27.7995 | 25.4661 | 23.4124 | 19.9931 | 17.2944 | 15.1380 
42 | 30.9941 | 28.2348 | 25.8206 | 23.7014 | 20.1856 | 17.4232 | 15.2245 
43 | 31.5212 | 28.6616 | 26.1664 | 23.9819 | 20.3708 | 17.5459 | 15.3062 

44 | 32.0406 | 29.0800 | 26.5038 | 24.2543 | 20.5488 | 17.6628 | 15.3832 
45 | 32.5523 | 29.4902 | 26.8330 | 24.5187 | 20.7200 | 17.7741 | 15.4558 
46 | 33.0565 | 29.8923 | 27.1542 | 24.7754 | 20.8847 | 17.8801 | 15.5244 

47 | 33.5532 | 30.2866 | 27.4675 | 25.0247 | 21.0429 | 17.9810 | 15.5890 

48 | 34.0426 | 30.6731 | 27.7732 | 25.2667 | 21.1951 | 18.0772 | 15.6500 

49 | 34.5247 | 31.0521 | 28.0714 | 25.5017 | 21.3415 | 18.1687 | 15.7076 

50 | 34.9997 | 31.4236 | 28.3623 | 25.7298 | 21.4822 | 18.2559 | 15.7619 
ne, en a 

3 
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Answers to odd-numbered 

exercises 

GROUP 1, p. 18 

1. a + ab — 263 — 2ab?. 3h De 5. 2c? —cd+2d+ ec. 

7. 22% — 62? + 5a — 2. 9. 3a + 6by — S5cy? — dy’. 11. 2° + 7x — 4. 
13. —2x3 + 22? —x + 10. 15. —4x? + 13x — 6. 176: 19. x — 2y. 
21. —m + 9n. 23. (a) —2; (b) —15. 25. —a + 5b — 6c. 

27. 6m — n + p. 29. 42? — 3. 31. 3a2° + a — a. 

GROUP 2, p. 27 

1. —16ab?. 3. x8y? — Qry? + 42y?. 5. 3a3 — a’b — 20ab? + 146°. 

7. a + 86%. 9. —m® + 2m> — 3m? + 4n3 — 3n? + 2m — 1. 

11. vyz + avy + axrz + ayz+auet+ ay + az + a’. 13. a® — Bb’. 

15. a? + a* + 1. 

37. a* — 2a*b + a*b?. 39. a®x? — xy”. 41. a? + 2ac + c? — DB. 

43. 12x? + 2x — 4. 45. 27m*® — 54m?n? + 36mn* — 8n!°. 47. «® — 1. 

49. a® + 5? + c? + d? — 2ab + 2ac — 2ad — 2be + 2bd — 2cd. 

GROUP 3, p. 36 

1. —227yz. 3. 2ax — 4by. 5. 2x — 3y. 7. a — 3b. 

9. mm — mn + mn? — 2°. 11. vt — wy 4+ ay? — vy? + y'. 

13. x? — 2xy — 27. 15. 2a” — 3ab + b?. Wh Ar Ui a 7 

19. 0 = 2a + 2a —a+1, R= —6. 21. a® — 2ab + B?. 

27. x + 2y. 31. 2v + y — 2. 33. —Sl. 35. 2 +a —3. 

GROUP 4, p. 42 

1. 2xy?(x? — 3y). 3. 2b°(2m + 3n)?. 5. (ec +y+aat+y—a). 

7. (m—n+b\(m—n — b). 9. (a — 2)(2a + 3). 11. (4% — 3)(3a — 5). 

13. (2m — 3n)(Sm + n). 15. (@+y—2)@+y-+ 3). 17. (~ + 3)(~ — 2y). 

19. 2a2(2x — y)(m + 2n). 21. (2x — y)?. 

23. (ab? + 3c2d)(a2b* — 3ab?c?d + 9c*d’). 25. (1 + my)i + yl — y). 

27. (a2 + a + 1)(2? — x + 1)(2* — a? + 1). 

2. (@tyt2ety—aDete—yy +2 —-2). 
413 
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31. (Qu — 1)(w + 2)(3x — 2). 33. (a + 2b)(a — b)(3a — 25). 
35. (w + 1)(x — 2)(w + 3). 37. (a+ — 16)(a + 3). 

39. m(m — 1)(2m + 3)(m + 2). 

GROUP 5, p. 48 

ips a = apse Gee wae 
a—b vw? — avy +y? 1-2 2+ | 

a + | 3x7 — | Be 1 
9. 13. 

x—1 a(x? — 1) xv—4 a@+a’+1 

3ax a— 1 
17,00) 119.0.) 20 3. n= a 25. 

2by o+2 
6 2xy 

2a aes 133.8 eS : 
7] x + Ue 

x 1 a 
39. ~ 44.1 —2, 43:28 ~45.— 

a+2 Bie 

GROUP 6, p. 54 

3. 8 5 : 5 al 9 i ro] 13 15 Z A ° 5 ‘| 5 64 & b 3 O 5 z 5 es fits > 1a. 

17.2. 19 ¢2—y. 2.aew+2+ae 4. 23. x — 3a%y% + 3eby% — y. 
25.a—b. 27. m§—1. 29, «7% — xlsy'4 + y%, 

31. a% + a%nx's + 2%, 33. arty, Cae 
q x*(a@ + 2y) 

: 20 37. 2(4 — a)¥4, Wea 
(a + y)? 

GROUP 7, p. 60 

Vip aa Sa j,— = 
5. —3bVb2. 7, 3a’ V5ax. 9 o V6a. Il. V2a. 

13,273 —3V2. ~15) 76479.) 17,10V3.0 919845 
12,— ei TP 3/= 6,— 6- 

2132) 923. V6 2 = BV 15) 28 ey ee 

27230 12.6. © 2929V3 110) 312 Vv Ge 3 0: 
- 2 V3 dV 2 =v 20 

8576 4-2 6. Ie ee a0 ao 20 

t= Vita VIO =v 35 V alze Teer Ones cone) 
a 5 b-a 

GROUP 8, p. 63 

11. (@ — 2y + 3)(3e + y — 2). 15. a(x — y); alu — y\(w + y)\(w + 2y). 
= = 3/ 3/75 

21. (a) V5; (b) V6. ihe eae 23. 3.7320508. 27, 

29.40. V6.4 V4.6 Bie set saa 
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GROUP 9, p. 70 

3V es 3V 
1. @A=—; (b)r= —. Sia As Sree 

Tr ah 9 

eats Ale a 2 1302088: 8 15, Se OV 6. 

(ie ee eg See et I 
@+h+)@t+) 22 + 3 

GROUP 10, p. 78 

PB, Sik Ae sik, Wh SPR SSa0 lene. 

GROUP 11, p. 86 

toa Sues ah ip Thsotek 9. m. UNG Vey, 13. 0. 15) 5. ily Ds 

2 emacs 6 — ba = 
ie a) oe a De fon eee 

r+s 2 3 a b 

TP =e ae 
25. Pipe eee qh 

{Be t 

GROUP 12, p. 88 

ie Seis SOMO: Sora: fs, SO) Ws 16, 245 2p 

120 Te 13. 14 hrs. 15. 24 hrs. i SVintes, 

19. 42 mi. 21a 15 min: 23. 2 of 60%, 4 of 90%. 

25 Bis Abs 27. 49, min. past 3. 29. A, 6 days; B, 3 days; C, 2 days. 

GROUP 13, p. 97 

eC, 1): 32 oa— i): 52 (0510): 7. No solution. 
i 

9. No solution. 11. (-2. ;}. 13. (2a, b). Ey, (Ss 3, De 

3 ; 
igh, (ASE OF 21. = PA, “12. 25. 300 mi., 50 mi. per hr. 

2 ae 29. A, 3 days; B, 4 days; C, 5 days. 

GROUP 14, p. 104 

peo a8 =. oe) oe A eee eee? 

: v5 . Fishes he arene = EG oy tee SO ae 

21. io 23.b4 Va. 27. 15ftby10ft. 29. 3 hrs., 6 hrs. 
a 

31. 100. 33, 2) SECS. oh Sides 7 the 
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GROUP 15, p. 109 

1. Real and unequal; —1; —6. 3. Conjugate complex; 2; 3. 

5. Real and unequal; 4; 1. Tamas 9, —8, 4. ih he Sy 

13. « — 7x +12=0. 15. 2 —2=0. 17. «# —2x —4=0. 

19. (w — 2)(@ — 5). 21. (@ +1 + 2i)\(@ + 1 — 2%). 23, k= 1s —2. 

10 
Ry Plo. Ae IL) D2, eo. 31.@a=2,5==1. 3372, 

GROUP 16, p. 114 

Dee 4 ord Sed, qe tet, =a ow: : 

= V/33 
2) 2, 1, eee 11. 5. ig}; 3), =k beh, AI 17. No solution. 

16 
1952: 21. Th Ps Mh Se 25. 16x? + 25y? = 400. 

GROUP 17, p. 120 

1. min. = 3 for x = —2. 3. min. = 0 for « = 3. 5. max. = 4 for = 1. 

Te EOS: pes < land a> 4; neg. when 1 <a < 4; zero whenz = 1,4; min. = - 

when # = 5: 9. Pos. for all values of x except Z Zero eee = 4)2 ae = 0 for 

fs => th, 11. Pos. for all real values of x; min. = z when x2 = 5: 15. Ss 

17. Each leg 7 in. long. 19. 25 ft by 50 ft. 25. ax* — bax + 9a + 5, a> 0. 

GROUP 18, p. 125 

oes 
124,2), @ ) 3..(152), (40-4) Sd eed 

= aS SF BS 54 V7 
eae ) Ce abe bane Si 

5a, 5 
Spee. 8 
( =v 

5 5 
ie Ee a 6V13 —6V13 —6V 13. 6V 13 =6V 13) —6V 13 
SACRE ig hegre icy ree: 13° 3 13a oe 13 eee ane) 

17. (4, 0), (4, 0), (—4, 0), (—4, 0). 

7" (= _S) VIOP=—V6 \o (=v 100 Ve) \] =e 10merY on 
Diemer rer ar amas hort Tip Dee 

21S) 2.) 24.15 iby 25 ese 
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GROUP 19, p. 130 

17251). (—=2, —1),2), (=1, —2), 3. (2, —2), (—2, 2), (0, 2), 0,-2.2), 
13 

5. 3,5), (—3, —5), & a (=. : 2), 15. (2, 1), (1, 2), (—1, —2), (—2, -1). 

ViSe1 15 toe Seto 1S itp Rg cSt Det 5 Fa alt oes ek ee i ( ), ( (eB! By 5 Zz Sai) 

19. (4, —3), (—4, 3), (—3, 4), (35 —4). 21: (4, A —4). 

23. (1, 5), (—1, —5), (14, —8), (—14, 8). 25. (0, 0), (1), (. i 

39525 
39° 2). Phila Pa Pas 27. (155); (2 

GROUP 21, p. 138 

ica —i,a= 1: 

GROUP 22, p. 145 

a4. Sh SS 55 = — 2: 

7. Pos. when —1 <a <2; neg. when 2 < —1, x > 2; zero when z = —1, 2. 

1 
9. Pos. for all values of x. i ES ee Se oe (By ay a? x< —3. 

15. All values of z. 17. All values of «. 19. All values of x except 4. 
Dicey. 230 2 4,¢ 249 25. he 4 ke 4. 27 4 = ke 0. 
2) he. sh ae eee ee il; BBE I ee ee A 
B55 0 = —2 alia) <4: £9 ue Sak, 897 — 3), a AlN — Der | 

1 1 
43. a > 4. 45. ~E<2< 5,051, ge eg aie 

4970 fer <alere 2, 

GROUP 23, p. 148 

1 2 a: Si eee Se By Ul eee 7.0>a> —4. 

3 
Bo2 > 3: Gy i) See Nie Ramer 19. x > 4. IN|, ae Sh, Pe aS 3} 

GROUP 25, p. 161 

1. 81at — 108a°b + 54a*b? — 12ab* + 5+. 

3. v8 + 18x8y + 135xty? + S40xr%y? + Lato + 1458xy> + 729y°. 

16 16 
5. x8 + 401% + 605 + 42% + 2. 1.2 a av+6— Por 

2 2 

Oe ee ee Ia dct 6 — 4a + a 
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13. 

15. 

19% 

23. 

8 Answers to Odd-Numbered Exercises 

a + 3a2b + 3ab? + b* — 3a’c — 6abc — 3b®c + 3ac® + 3bc? — c*. 

128a’ — 448a°b + 672a°b? — S60a‘b*. 17. a® — 3a*b + 4a°b? — = a’b?. 

a6 — 120'4y'4 + 66a5y — 220x%2y72, 21.1 —2# +2? — 2. 

1 + 2x + 3x? + 42°. 25. 1 — 50 - rea = aH. 29. 1.04060401. 

231 
31. 0.995. 39. 792x?2y72, 41. ae 43. —252. 

231 231 1215y4 ee 
— ab’, — a’b’. . tht = , 49. 5th term = 1820y-~”8. 45. 6 aD 32 a’b 47. 8th term Fat Yy 

GROUP 26, p. 168 

19 

29 

Seay = 3d. ey oe ee Cn 

(. =) i‘ (2 ih O04 ee T1o el eon Lec 1 Sore gn 

z aoe 
ig hh. PAL, SES pe ae LE ah Bee 

On Wee oi) Shey ° Ee ° i: ° 5 3 1. 

GROUP 27, p. 175 

11 

21 

29. 

37. 

lid 13. 57 TS 17 SE 192 ae. 
1-4. 23. —4% 25.7=4,0=120% 27, r= 2,0 = 210° 

r=7,0=180°. 31.r=8,0=240°. 33.6% 35. —V3—i. 

3 3 = 
Sey tie 39s rae i 9 2 

GROUP 28, p. 181 

1. 

9. 

17 

4V2+4V2i. 3.271. 5. 25(cos 80° + isin80°). 7. —8i. 
tome # ; = 
ed 11, is 9 13. 85 9 15.128 198 37. 

V=16 = 16V 30. 199 3. i 2. r = V2, 0 = 45°, 165°, 285°. 

~14i%,-14i. 25. r= 2, 6 = 0°, 72°, 144°, 216°, 288°. 
27. r = V3, 0 = 15°, 75°, 135°, 195°, 255°, 315°, 
29. r = 2, 0 = 15°, 60°, 105°, 150°, 195°, 240°, 285°, 330°. 
31. r = 1, 0 = 30°, 70°, 110°, 150°, 190°, 230°, 270°, 310°, 350°. 

ie ih ee 3 
B30 lye ans a een 3 3V3 i. Sy Geille Sore SME Bhs 5 eine 

2 Za, 2 2 
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GROUP 29, p. 188 

Mite GCG GIS 3S $20 ue ye rc 

GROUP 30, p. 195 

6 
Poa: 3. —S. 5. —2. (hi So 9. y = 22° — 322 + 5a. 

wv 

IOS Sisces: 22 secs. 23. 400 lb. Joss, MOLI IA, Clase 2. 17.4%, decr: 

PASS Ap lite 

GROUP 32, p. 206 

1. 42; 242. 3h Sl5 Sao: Se 2. 7. a, = —16, 5, = —44. 

Sari 14a — — 15. ll. n=9,d= —S. 13. n = 17, a, = —3. 15. 

28 20 4 4 
iN, = 2 192) OL 25450: 21. ——, ——_ —4 _- -- 

3 3 33 

25. a, = —4, S42 = —30. IRE, Wie 31. 27? + 71. SB Ss Soames 

= 2 
37. ay -- = d, Qy 5 d. 8), = 2p. 43. 576 ft; 176 ft. 45. 1357. 

GROUP. 33, p. 211 

419 

63. 

23. d=1,a,=0. 

3 135 
1, 1024; 2046. 3. 4096; 5461. 5. 5; 944. Spe SO 

1 14 
9.r=2; s9= 126. I. a, =5; a = 320. 13.415. 18.7,5,1,2,4 

i Bap 1957— 7 ai— 23 IAN, Ge SUPE Sg SO IB, Sa Ic 

9 8 

29. |—] . 31. 127355 gals. Bh, Hy ie 
10 

GROUP 34, p. 214 

2 

A. we need pee ee gee 1135. 
9 4°2 ape Che] 2 6 r 

8 23 46 
BON Ay eee a i 3 13.12. 15 2,5545 Tae 

GROUP 35, p. 221 

3 = be 7 35 Al 
S E pe, he ——— 1. 24. 3. 5G + V3). 5. 5 ( 5+ 1) 1.5 30 a 

1489 1 
131937 E ce 21 eT Le 

3300 2 16 
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GROUP 36, p. 229 

Se 7, 17. 7. 40, —12. OY); -5, —0.8291. D102 ees 8 

13,.2°4+24+24+1, -1. 15. 4x3 — 22? — 2x + 4, 5S. 17. No. 19S Yess 

21.A YES. 23. No. I, NEES, 27.2 —2,"%+3. 29. 3, —2. 

31. a? — 322 + 3a — 2; 5S. 33. —4. 35. —5S. Ly), (SS, 

GROUP 37, p. 234 

le: 3. 0, 4, —2. 5. +1, +2. TA — 32) a en) 

9,2, -1,5< 2% <6, —4<2< —3. 11. +2. 13. 1, 1,1, —2, —2. 

Oa a ae 21a a 230 2 <2 el ess 

GROUP 38, p. 238 

1. 2 — 277 —xa2 +2=0. 3. vt — a — 162? + 4v + 48 = 0. 

5, «8 — 307 +2=0. 7. xt — 6x3 + 82? + 2x —1=0. 

9. x — 2x4 — 6a? + 202? — 192 + 6 = 0. 1. xt + 2 — 11a? 4+ 35¢ — 50 = 0. 

13. —1, —2. 15.2 +i. 17, Fv. 19, +2i. 21) 2 V3. 

IB}, Hl = D1) SS 3, 9, Als Si = I, C= =i, 

GROUP 339, p. 240 

Ties 3 8, 1 SV See ey ea 

921) 1 4255, 110, 2 V2 2 — 8 IS a 2 
15. xt — 4x3 + 2422 — 162 + 80=0. 17. xt — 323 — 92 + 25a — 6 = . 
19, (wv — 2)(~? + 5x + 7). 21. (@ + Iw — 4)@? + 2 + 1). 

23. (2x — 1)(@ — 2)(a? — 2x — 1). 

GROUP 40, p. 244 

1. 1 pos., 1 neg., 2 complex. 3. 2 pos., 1 neg.; 1 neg.,2 complex. 5. 6 complex. 
7. 1 zero, 4 complex. 9. +1,6 complex. 11. 8 complex. 

13. 2 zero, 3 pos.; 2 zero, 1 pos., 2 complex. 

15. 3 pos., 2 neg., 4 complex; 1 pos., 2 neg., 6 complex; 3 pos., 6 complex; 1 pos., 
8 complex. 

GROUP 41, p. 249 

1 13%) 2) MP TOSS SUAS ek ee eee 2 Geen Tai ae Oe 
3 2°3 Pie deere 

= 1 / 7; 

11, 0; 0,012) V2, 913) Tea as pe eee 
3 6° ae 

ee 2 17.4, ==, d= 1 Sg =? RTL a On ee 35 3 



Answers to Odd-Numbered Exercises 421 

GROUP 42, p. 255 

1292.6: Shy NGIe Sh Sk: th BGs Be Sale 

13. 2° + x? — 262 + 24 = 0. 15.0 a? — 62? — 122 + 112) = 0. 
19. 2x* — 62° — 7x? +12 =0. 21. xt + 308 + 2? +e24+1=0. 
23. a? — 10x? + 9x + 56 =0. 25. 2? — a —9e +9 =0. 

29. 32° + Sa? — 342 — 24 =0. 31. x* + 6v5 + Ila? + 102 + 1 =0. 
33. 2x° + 3.06x? + 1.0606x — 0.989698 = 0. 35. 32° — 13x”? — 18% + 40 = 0. 

GROUP 43, p. 259 

ihe sy Palle So Le25e Re Shik) G0 1.095: 9. 3.264. Ik, Aus 17. 0.28. 

OTT a 4 O4 ee Lee OOS Ol 3ue 2558 —3-27 lene 7 1.93308 29) 12075.02.9) 

GROUP 44, p. 262 

1 1 
Pe a6 52,2, 7 

2 2 4 

1 1 11 
eae. [Re 13 1 15 ee ae Tl 3 13 bs 

‘a 3 
hee 6h ia 3 ch =e, 

Seame 2 

GROUP 45, p. 270 

2 1 2 1 2 1 2 
ek 

Ls Sera a+ 3 a — 3 a+2 ary aeacy 

3 2 5 3 2 3 4 a ees een eae | he eee awe ei a eo 2G.) 
oa es wa 4 2 1 3 
= -—- — — — + -___., 15. SSS FS SS SS 

a ar AOE EE Emer) A neeery z+41 (x + 1)? 

224) 2 : i9gre 
ey Gack Py Sa (@— 1)? : ap ae 

17. e-1 wey: 

GROUP 46, p. 273 

2 a — 3 2a 4 xz— 1 x—3 

Ba eet 1 pet oe pt ee ees 

4 D, 2x + 1 1 D, x—1 

rg es te 8 Pate B ss aE Se ETS ; 

gree eo — it 3 2x — 1 x + 

he apr (te 1)* eer a ien ea ala 

y i 3 ie 

Parmar 1p ete 6 ieee 

3 1 2a — 1 xa«+2 

Ea Se See a a (e? +a +1)?" 
3 a +1 Z 2x 

1), 2ke Se il ap Se SE ————— Ht 

ees at tl G@t+i1)? G@-+ 1) 
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GROUP 47, p. 277 

5 Ie 5. 24. Th, SEO. D720 a2; 11. 60; 120; 120. 1354°5 852s: 

Saas 17. 504. 19. 421,200. 21. 13,353,984. 23. 6720. 25e 190! 

‘GROUP 48, p. 281 

5. (a) 5040; (b) 7. 7. 10. 9.2. 11. 720. 13. 51,840. 15. 560. 

(p+ 9)! 
rg) 

2952520; 31. 720. 33. (a) 5040; (b) 1440. 35. (a) 720; (b) 240. 

17. 462. 19. 21. 325. 23. 240. 25: 120: 27. 5760. 

GROUP 49, p. 285 

3, (a) 102) (b) 2l6 9548.) 8709 292 2aeeeismls6se 15.1001 17at 
19. 720. 21. (a) 495; (b) 330; (c) 210. 23. 3150. 25. 861. 27. 36. 29. 714. 

GROUP 50, p. 293 

Tess © 69. ue tus boo bute well) bd 2 See Smid 
17. (a) 16; (b) 16. 19. (a) 20; (b) 42; (c) 63. —-21.. 70. 

GROUP 51, p. 301 

3 1 1 1 1 3 
So Or. 5.—. Tae Sito: 9. -. 11. -;3 -; -. 

10 poe 4 a? Pra 
25 60 1 20 5 

ee ee Pee Teel sth Sek = 5) 
66 143 Nee baa?) age os 
5 ' i 22 1 

279 429.495 50.0 31. 66 cents) 133414) an) eee 
12 850 425 126 
2197 94 
20825 4165 

GROUP 52, p. 307 

25 i 14 2 4 8 9 
pe lin a3 9a) ee —s eg 
216 NR 15 Cree th Bh 

52, 2 27.2 29, 4 31. (a) 0.72 ae = =. . (a) 0.72; (b) 0.02; (c) 0.18; (d) 0.08. 

| il 1 1 3 6 5 
33. (a) —; (b)—; (c)-; (d)—. 3548 a ——- = 

Herr alr aC), Sy ace, 
39. $20, $10, $5. 
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GROUP 53, p. 318 

5 216 16 Tl 13 — ih NS oO. 9. 0. . .— —— 7716 (@) os ( ) Ss 7658 3 128 ag 3888 
459 8585216 1053 

1G, ==. igh : 19. ee . 23 r 5. ary Ms 5 8 512 9765625 3125 2 324 O56 
Pp 14080 63 

> 59049 ° 565 

GROUP 54, p. 326 

1. —14. 3. —28. 5. —3ax. 7. x — 6x — 3. 9. 2, —3. 11. (5, —2) 
13. (—3, 4). 15. No solution. 

GROUP 55, p. 334 

LE TiSy so 107: ab KS; 7. 48. Bh 2h, 3b TU Grlse2)s 13. (2, 6, —2) 
15. (0, 0, 0). 33. z — 2y —2=0. 355018: 

GROUP 56, p. 344 

oi Wl+e?+y? 4+ 2. 13. —24. GY, 3) 17. 1288. 

23. 6x? + 6y” — 32x — 25y — 34 = 0. 29. 40. 31. (a — b\(b — cl(e — a). 

33. (a — b\(a — cha — d\(b — c)(b — d\(c — d). 

GROUP 57, p. 356 

3. (3, —1, 2). 5. (—3, 0, 1). I CES Sh) 0, @; =1l,0; 2,0). 

155) h22—173. 72 — tl) 

iy, 1, WS WAKO ete. SARE EL ete She eR ep FO) Ibs (Bx As 1): 

23 koa (225;—11): 

GROUP 58, p. 362 

2 2) 

1. log, 16 = 4. 3. logr,- = 3° 5. log, 2 = y. Tey IOP == CO: 

3 
OF = = Wil ith, 7 es AE iB}, 3h. 15. 4. 17 0), 19. ae 

21. 64. 25. «x = 1 + logio y. 

GROUP 59, p. 366 

9. log, (@ + 1) + log, (« — 1) — log, (« + 2) — log, (@ — 2). 

1 : ‘ 
11. log, x + 2 log, (@ + 2) — 4 log, (x — 2). 13. 5 loge (aw? + 1) — log, (a? + 2)]. 

15. 4. 172 0.72. 19. (a) 3; (b) 4. 212 — lop, yy — 2. ; 

eed! 7s ee Sax aie 
es le EES arr ea aan: none 

23. x = logy 
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GROUP 60, p. 372 

log 5 
pe he hid eee yc) 2 log 3 — log 5 Seki re Sh. le thy Ny EP. 9 

eras 
15. 5In2. 17iin fe 19) dee ie eee 

CE—@Q 
23. —CRIn | ———]. 

35. 2 —y=1. £4), GS OE, 39. 4a? + 4y? — 2? = 0. 

log r 

25. 4. Zilwes 29. 3. 313: 33.02. 

GROUP 61, p. 380 

1. 4.322. Sim laloe Sp, UE) The. Psa EU 7.8: 13312695; 

15. 2.894. 17. 1.909. (EY WEEE 21. 7791. 23. 1.802. 25. 0.2918. 

27. 0.8096 sq ft. 29. 12.95 sq in., 4.380 cu in. 31. 16.98. 33. 1.239 )sec: 

Se ll, spR 8H AID: 39. 1.946. 

GROUP 62, p. 389 

1. $15. 3. $762.50. 5. $990.09. Ik 837% YG NO A 11. 25 yrs. 

I AS ee 17. $609. 19. $486.72. 21. $4438.55. 23. $2693.80. 

25. 15.73 yrs. 27. 14.07 yrs. 29. j= ( + ") —1; r=27{0 + jn — lj. 
n 

33. 1.09344. 

GROUP 63, p. 396 

3. $3210.81. 5. $6003.05; $4055.45. 7. $1940.52; $1625.16. 9. $1484.94. 
11. $50,000. 13. $197.20. Seu 17. $1844.11. 19. $122.89. 
21. $655.55. 29. $111.02. 



Index 

Abscissa, 74 Amplitude, 172 

Absolute inequalities, 133, 136 ff. Annuity, 390 ff. 

Absolute value, 14 amount of, 390 

of complex number, 172 applications of, 393 ff. 

Addition, 11ff. ordinary, 390 

laws of, 12 period of, 390 

of complex numbers, 166 present value of, 392 

graph of, 171 term of, 390 

operation of, 2 Antilogarithm, 376 

rules of algebraic, 16 Approximation of irrational roots, 

Algebra, foundations of, 1 250 ff. 

fundamental theorem of, 235 by Horner’s method, 257 ff. 

nature of, 7 ff. by linear interpolation, 250 ff. 

number system of, 2 ff. Argument, 172 

of complex numbers, 9 Arithmetic progression, 204 ff. 
of matrices, 9 common difference of, 204 
of quaternions, 9 extremes of, 206 
operations of, 6 ff., 10 ff. means of, 206 
postulates of, 2 sum of, 204 

structure of, 7 

Algebraic expression, 8, 10 

Algebraic functions, 71, 72 

variation of, 197 ff. 

Algebraic operations, 10 ff. 

Algebraic process, 8 

Algebraic solution, 223 

Algebraic sum, 11 

Algebraic term, 10 

Associative law, of addition, 12 

of multiplication, 20 

Asymptotes, 199 

Axis, of coordinates, 73, 74 

of imaginaries, 170 

of reals, 170 

Bank discount, 384 

coefficient of, 10 Bar, 12 raat 
Amortization, 394 Base of logarithmic function, 360, 361 

Amortization schedule, 394 change of, 365 

Amount, compound, 384 common or Briggs’, 368 

of annuity, 390 natural or Napierian, 368 

simple, 383 Bibliography, 399 

tables of, 408, 410 Binomial, 11 

425 



426 

Binomial coefficients, 159, 290 ff. 

maximum value of, 292 

Binomial distribution, 318 

Binomial expansion, 155 ff., 290, 313 ff. 

general term of, 160 ff. 

maximum term in, 313 

Binomial law, 311 

Binomial theorem, 155 ff. 

Braces, 12 

Brackets, 12 

Certainty, 297 

Characteristic, 374 

Circle, equation of, 121 

Coefficient, 10 

binomial, 159, 290 ff. 

maximum value of, 292 

leading, 223 

Cofactor, 328 

Cologarithm, 379 

Combinations, 282 ff. 

complementary, 284 

Common difference, 204 

Common logarithms, 368 

characteristic of, 374 

computation with, 377 ff. 

mantissa of, 374 

tables of, 373, 406 

Common ratio, 208 

Commutative law, of addition, 12 

of multiplication, 8, 20 

Completing the square, 101 

Complex fractions, 47 ff. 

Complex numbers, 6, 163 ff. 

absolute value of, 172 

addition of, 166 

amplitude or argument of, 172 

complete polar form of, 178 

conjugate, 105, 165 

division of, 166, 174 

equality of, 164 

evolution of, 178 

involution of, 177 

modulus of, 172 

multiplication of, 166, 173 

negative of, 165 

polar form of, 172 ff. 

rectangular form of, 169 ff. 

roots of, 178 ff. 

standard form of, 165 

subtraction of, 166 

Complex variable, function of a, 187 ff. 

Compound amount, 384 

table of, 408 

Compound events, 303 ff. 

Compound interest, 384 ff. 

Conditional equation, 80, $1 

Conditional inequalities, 133, 139, 140 

Conic section, 121 

Conjugate complex numbers, 105, 165 

Consistent system, 93, 351 

Constant, absolute, 66 

arbitrary, 66 

of proportionality, 191 - 

of variation, 191 

Continuous function, 359 

Conversion period, 384 

Coordinate system, linear, 72 

rectangular, 74 

Cramer’s r 49 

ritical values, 140 

Cumulative frequency distribution, 317 

Curve, 77 

cumulative frequency, 318 

individual frequency, 318 

normal probability, 318 

probability, 315, 317 

De Moivre’s theorem, 177 

Defective equations, 83 

Defective system, 353 

Degree, 11 

Denominator, 4, 43 

Dependent events, 305 

Dependent system, 93, 351 

Dependent variable, 67 

Depreciation fund, 393 

Depressed equation, 236 

Descartes’ rule of signs, 241, 243 

sett S2)l fi 

cofactor of an element of, 328 
elements of a, 322 

evaluation of any, 328, 331 
expansion by cofactors, 328 

Yeading term of, 337 
minor of an element of, 328 

gf any order, 337 ff. 
of order 2, 322 ff. 

of order 3, 327 ff. 
~ of order n, 321 
of the system, 323, 348 

principal diagonal of, 322 



Index 

Determinant, properties of a, 324 ff. 
Difference, 13 

Direct variation, 191 

Discount, bank, 384 

Discriminant, 105 

Distribution, binomial, 318 

cumulative frequency, 317 

individual frequency, 317 

normal, 318 

Distributive law, 21 

Dividend, 4, 29 

Division, 29 ff. 

definition of, 29 

equality law of, 30 

exact, 35 

into groups, 287 

of complex numbers, 166 

operation of, 4, 29 

procedure in, 34 

rule of signs for, 31 

synthetic, 226 ff. 

with remainder, 35 

Divisor, 4, 29 

Effective rate, 387 

Elements of determinants, 322 

Eliminant, 355 

Elimination, 91 

Ellipse, equation of, 121 

Equations, 80 ff. 

conditional, 80, 81 

defective, 83 

depressed, 236 

equivalent, 82 

exponential, 369 ff. 

fractional, 85 

identical, 80, 81 

in quadratic form, 110 

indeterminate, 90 

linear, 84 

logarithmic, 371 ff. 

members or sides of, 80 

quadratic, 99 

radical, 113 

rational integral, 223 ff. 

redundant, 83 

roots of, 81 

simultaneous, 91 

solution of, 81 

systems of linear, 90 ff., 347 ff. 

transformation of, 252 ff. 

Equivalent equations, 82 

Evaluation of any determinant, 328, 
Sail 

Events, compound, 303 ff. 

dependent, 305 

independent, 303 

mutually exclusive, 306 

simple, 299 ff. 

Evolution, of complex numbers, 178 

operation of, 5 

Expansion by cofactors, 328 

Expectation, 299 

Exponential equation, 369 ff. 

Exponential function, 358 

characteristics of, 359 

graph of, 359 

Exponents, 4, 51 ff. 

fractional, 52 

laws of, 23, 24, 32, 44, S51 fi. 

negative, 53 

rational, 53 

EMO), SD 

Expression, algebraic, 8, 10 

Extent of a graph, 198 

Extraneous roots, 83 

Extremes, arithmetic, 206 

geometric, 210 

Factorials, 156 

Factoring, 38 ff. 

Factor theorem, 225 

Field, number, 37 

Fractions, 4, 43 ff. 

complex, 47 

improper, 43 

partial, 265 ff. 

product of, 46 

proper, 43 

quotient of, 46 

reciprocals of, 46 

reduction of, 45 

simple, 43 

sum of, 45 

Frequency, 298 

Function, algebraic, 71, 72 

classification of, 71 ff. 

continuous, 359 

definition of, 67 

explicit, 68 

exponential, 72, 358 

graphical representation of, 76 ff. 
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Function, implicit, 68 

inverse, 68 

irrational, 72 

linear, 80 ff. 

logarithmic, 72, 360 

multiple-valued, 68 

of a complex variable, 187 ff. 

of a single variable, 68 

of several variables, 68 

quadratic, 99 ff. 

rational, 72 

rational integral, 71, 80 

single-valued, 67 

transcendental, 72 

trigonometric, 72 

zeros of a, 78, 81 

Functional notation, 68 

Fundamental theorem of algebra, 235 

Geometric progression, 208 ff. 

common ratio of, 208 

extremes of, 210 

infinite, 216 ff. 

means of, 210 

sum of, 209 

Graph, 76 

asymptotes of a, 199 

discussion of equation of, 198 

extent of a, 198 

intercept of a, 198 

of polynomial, 230 ff. 

Graphical representation, of complex 

numbers, 169, 172 

of difference of complex numbers, 

ee, 

of sum of complex numbers, 171 

Greek alphabet, 402 

Groups, abstract, 182 ff. 

division into, 287 

Harmonic progression, 212 ff. 

means of, 213 

Highest common factor, 64 

Homogeneous polynomial, 11 

Homogeneous system, 97, 352 

Horner’s method, 257 ff. 

Hyperbola, equation of, 122 

Hypercomplex number, 8 

Identity, 81 

Imaginary unit, 6, 164 

Index 

Improper fraction, 43 

Inconsistent system, 93, 351 

Independent equations, 93 

Independent events, 303 

Independent system, 93 

Independent variable, 67 

Indeterminate equations, 90 

Index, 4, 5, 51 

Index laws, 23, 24, 32, 44, 51 ff. 

Individual frequency distribution, 317 

Induction, mathematical, 149 ff. 

Inequalities, 13, 132 ff. 

absolute, 133, 136 ff. : 

conditional, 133 

critical values of, 140 

graph of, 139, 141 

linear, 139 

order relations of, 132 

properties of, 133 ff. 

quadratic, 140 ff. 

sense of, 133 

solution of, 139 

Infinite geometric series, 218 

sum of, 218, 220 

Infinite series, 159, 218 

Integers, 2, 3 

Intercept of a graph, 198 

Interest, compound, 384 ff. 

compounded continuously, 388 

effective rate of, 387 

nominal rate of, 384 

period of, 382, 384 

rate of, 382 

simple, 382 ff. 

Interpolation, linear, 250 

logarithmic, 376 

Inverse variation, 192 

Inversion, 337 

Involution, operation of, 4 

Irrational function, 72 

Irrational number, 5 

Irrational roots, approximation of, 

250 ff. 

Joint variation, 192 

Laws of exponents, 23, 24, 32, 44, 51 ff. 

Leading coefficient, 223 

Limit, 216 

Linear combination, 91 
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Linear equations, in one variable, 84 Multiplication, rule of signs for, 23 
in two variables, 90 Mutually exclusive events, 306 

system of, 347 ff. 

consistent, 351 Natural logarithms, 368 
defective, 353 Necessary and sufficient condition, 61 ff. 
dependent, 351 Negative number, 14 

determinant of, 323, 348 corresponding, 14 

homogeneous, 352 Nominal rate, 384 

inconsistent, 93, 351 Nonhomogeneous system, 352 

nonhomogeneous, 352 Non-negative number, 17 

redundant, 354 Normal distribution, 318 

Linear function, 80 ff. Normal probability curve, 318 
Linear inequalities, 139 Number field, 37 

Linear interpolation, 250 reducibility in a, 38 

Locus, 76 Number system, complex, 6 

Logarithmic computation, 377 ff. of algebra, 2 ff., 6 

Logarithmic equation, 371 ff. rational, 4 

Logarithmic function, 360 real, 5 
base of, 360, 361 Numbers, complex, 6, 163 ff. 

graph of, 361 corresponding negative, 14 

Logarithmic interpolation, 376 hypercomplex, 8 

Logarithms, 358 ff. irrational, 5 

characteristics of, 360 negative, 14 

definition of, 360 non-negative, 17 

fundamental properties of, 363 ff. positive, 14 

systems of, 368 ff. pure imaginary, 6, 164 

tables of, 373 ff., 405 rational, 4 
Lowest common denominator, 45 real, 5 

Lowest common multiple, 42 signed, 14 
Numerator, 4, 43 

Mantissa, 374 

Mathematical induction, 149 ff. Occurrences, expected number of, 298 

atrix, 9, 321 Odds, 297 

Maxima, 118 Order relation, 132 

Means, arithmetic, 206 Ordinate, 74 

geometric, 210 Origin of coordinates, 73, 74 

harmonic, 213 

Minima, 118 Parabola, equation of, 115, 121 

Minor, 328 vertex of, 116 

Minuend, 13 Parameter, 66 

Modulus, logarithmic, 365, 369 Parentheses, 12 

of complex number, 172 Partial fractions, 265 ff. 

Monomial, 11 Pascal’s triangle, 159, 291 

Mortality table, 300 Period, conversion, 384 

Most probable value, 315 interest, 382, 384 

Multinomial, 11 Permutations, 275 ff. 

Multiple, lowest common, 42 circular, 280 

Multiplication, 20 ff. Perpetuity, 396 

laws of, 20 Plotting, 75 

of complex numbers, 166, 173 Polar form, 172 

operation of, 2 complete, 178 
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Polynomial, 11, 71 

characteristics of, 234 

degree of, 11 

graph of a, 230 ff. 

homogeneous, 11 

Positive number, 14 

Postulates, 1 

of algebra, 2 

Power of a number, 4 

Present value, compound, 385 

of annuity, 392 

simple, 383 

tables of, 409, 411 

Principal, 382 

Principal diagonal, 322 

Principal root, 51 

Probability, 295 ff. 

a posteriori, 298 

a priori, 297 
definitions of, 296 ff. 

empirical or statistical, 298 

Probability curve, 315, 317 

Product, 3, 20 

Products, special, 26 ff. 

Progressions, 203 ff. 

arithmetic, 204 ff. 

geometric, 208 ff. 

harmonic, 212 ff. 

infinite geometric, 216 ff. 

Proper fraction, 43 

Pure imaginary number, 6, 164 

Quadrant, 74 

Quadratic equation, discriminant of, 

105 

in One variable, 99 

in two variables, 121 ff. 

graph of, 121 

system of, 122 ff. 

properties of, 105 ff. 

solution of. 99 

by factoring, 100 

by formula, 101 

standard form of, 99 

Quadratic formula, 102 

Quadratic function, 99 ff. 

graph of, 115 

in two variables, 121 ff. 

maximum value of, 116 

minimum value of, 116 

reducibility of, 108 

Index 

Quadratic inequalities, 140 ff. 

Quaternion, 8 

Quotient, 4, 29 

Radical equation, 113 

Radical, sign of, 112 

Radical sign, 5, 51 

Radicals, 55 ff. 

laws of, 56 

multiplication of, 57 

order of, 55 

quotient of, 58 

similar, 57 = 

simplest form of, 56 

simplification of, 56 

solution by, 223 

sum of, 57 

Radicand, 55 

Range of variable, 66 

Ratio, 191 

common, 208 

Rational function, 72 

Rational integral equation, 223 ff. 

characteristics of, 234 

complete, 242 

depressed, 236 

incomplete, 242 

nature of roots of, 239 

number of roots of, 235 

Rational integral function, 71, 80 

Rational integral term, 11 

Rationalization of denominator, 59 

Rationalizing factor, 59 

Rational number, 4 

Rational number system, 4 

Rational operations, 64 

Rational roots, 245 ff. 

Real number, 5 

Real number system, 5 

Reciprocal, 31 

Rectangular form, 170 

Redundant equations, 83 

Redundant system, 354 

Relations between roots and coefficients, 

260 ff. 

Remainder, 13 

Remainder theorem, 224 

Repeated trials, 310 ff. 

Repeating decimal, 220 

Root, index of, 5, 51 

principal, 51 



Index 

Roots of an equation, 81 

characteristics of, 234 

conjugate complex, 239 

extraneous, 83 

irrational, 250 ff. 

approximation of, 250 ff. 
multiple, 232 

nature of, 239 

number of, 235 

rational, 245 ff. 

Sense of inequalities, 133 

Sequence, 203 

Series, convergent, 218 

divergent, 218 

finite, 203 

infinite, 159, 203 

infinite geometric, 218 

sum of, 218, 220 

Signed number, 14 

Simple events, 299 ff. 

Simple fractions, 43 ff. 

Simple interest, 382 ff. 

Simultaneous equations, 91 

Sinking fund, 393 

Solution, algebraic, 223 

by radicals, 223 

common, 91 

extraneous, 83 

of equation, 81 

trivial, 352 

unique, 91 

Subtraction, 12 ff. 

definition of, 12 

equality law of, 13 

of complex numbers, 166 

graph of, 172 

operation of, 3, 13 

Subtrahend, 13 

Sum, 3 

algebraic, 11 

of arithmetic progression, 204 

of geometric progression, 209 

of infinite geometric series, 218, 220 

Summation, notation for, 289 

Surd, quadratic, 240 

Synthetic division, 226 ff. 

Systems of equations involving quad- 

ratics, 122 ff. 

graphs of, 121 

solutions of, 123 
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Systems of equations involving quad- 

ratics, symmetric, 128 

Systems of linear equations, 90, 347 ff. 

consistent, 93, 351 

defective, 353 

dependent, 93, 351 

determinant of, 323, 348 

graphical solution of, 92 

homogeneous, 97, 352 

inconsistent, 93, 351 

independent, 93 

nonhomogeneous, 352 

redundant, 354 

Systems of logarithms, 368 ff. 

common or Briggs’, 368 

modulus of, 365, 369 

natural or Napierian, 368 

Tables, 404 ff. 

amount of an annuity, 410 

common logarithms, 406 

compound amount, 408 

logarithmic, 373 ff. 

natural trigonometric functions, 404 

present value, 409 

present value of an annuity, 411 

Terms, algebraic, 10 

degree of, 11 

rational integral, 11 

similar, 11 

Theory of equations, 223 ff. 

Transformation of equations, 252 ff. 

Transposition, 84 

Trial, repeated, 310 

single, 310 

Trigonometry, definitions of, 400 

formulas of, 401 

tables of, 404 

Trinomial, 11 

Trivial solution, 352 

Unity, 31 

Value, absolute, 14 

Variable, 66 

dependent, 67 

independent, 67 

range of, 66 

Variation, 191 ff. 

combined, 192 

constant of, 191 
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Variation, direct, 191 

functional, 191 

in sign, 242 

inverse, 192 

joint, 192 

of algebraic functions, 197 ff. 

special, 191 

Vectors, 184 ff. 

Vinculum, 12 

Yarborough, 303 

Zero, definition of, 3 

of a function, 78, 81 

Index 
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